Если принят критерий оптимальности типа минимум[45]
значенияСрывы управления «1:2» -> «2:1» -> «3:1»; «2:2» -> «3:1»; «2:2» -> «3:2» -> «4:1»; «3:2» -> «4:2» — полная необратимая катастрофа управления по концепции, объективно возможной, но не осуществленной по причине низкого качества текущего управления в процессе перевода объекта в избранное конечное состояние «5:3». Все остальные срывы управления обратимы в том смысле, что требуют коррекции концепции и управления по мере их выявления.
То есть метод динамического программирования в схеме управления «предиктор-корректор» работоспособен, а сама схема развертывается, как его практическая реализация.
Возможны интерпретации метода, когда в вектор контрольных параметров (он является подмножеством вектора состояния) не входят какие-то характеристики объекта, которые, тем не менее, включены в критерий выбора оптимальной траектории. Например, если в состоянии «0:2» различные субъекты не различимы по их исходным энергоресурсам, а критерий выбора оптимальной траектории чувствителен к энергозатратам на переходах, то такому критерию может соответствовать в качестве оптимальной траектория «0:2» -> «1:2» -> «2:1» -> «3:2» -> «4:3» -> «5:3» или какая-то иная, но не траектория «0:2» -> «1:3» -> «2:2» -> «3:3» -> «4:4» -> «5:3», на которой достигается минимум интеграла от текущей ошибки управления.
Это означает, что управленец, в разпоряжении которого достаточный энергопотенциал, может избрать траекторию «0:2» -> «1:3» -> «2:2» -> «3:3» -> «4:4» -> «5:3»; но если управленец с недостаточным для такого перехода энергопотенциалом не видит траектории «0:2» -> «1:2» -> «2:1» -> «3:2» -> «4:3» -> «5:3», для прохождения которой его энергопотенциал достаточен, то состояние «0:2» для него субъективно тупиковое, безвыходное, хотя объективно таковым не является. Это говорит о первенстве Различения, даваемого Свыше непосредственно каждому, перед всем прочими способностями, навыками и знаниями.
Кроме того, этот пример показывает, что на одной и той же “кальке” с матрицы возможных состояний, соотносимой с полнотой реальности, можно построить набор критериев оптимальности, каждый из частных критериев, в котором употребляется в зависимости от конкретных обстоятельств осуществления управления. И каждой компоненте этого набора соответствует и своя оптимальная траектория. Компоненты этого набора критериев, так же как и компоненты в векторе целей, могут быть упорядочены по предпочтительности вариантов оптимальных траекторий. Но в отличие от вектора целей, когда при идеальном управлении реализуются все без изключения входящие в него цели, не смотря на иерархическую упорядоченность критериев оптимальности, один объект может переходить из состояния в состояние только по единственной траектории из всего множества оптимальных, в смысле каждого из критериев в наборе, траекторий. Критерии оптимальности выбора, входящие в иерархически организованный набор критериев, не обязательно могут быть удовлетворены все одновременно. Для управления необходимо, чтобы процесс отвечал хотя бы одному из множества допустимых критериев.
Может сложиться так, что один субъект реализует концепцию «0:2» -> «1:2» -> «2:1» -> «3:2» -> «4:3» -> «5:3», а другой «0:2» -> «1:3» -> «2:2» -> «3:3» -> «4:4» -> «5:3». Хотя конечные цели совпадают, но, тем не менее, если управленцы принадлежат к множеству управленцев одного и того же уровня в иерархии взаимной вложенности процессов, то это — конкуренция, “спортивная” гонка или концептуальная война; если они принадлежат к разным иерархическим уровням в одной и той же системе, то это — антагонизм между её иерархическими уровнями, ведущий как минимум к падению качества управления в смысле, принятом на её иерархически наивысшем уровне, а как максимум — к разпаду системы. Арбитр — иерархически высшее по отношению к ним обоим объёмлющее управление. Тем более, если завершающие цели различны, то это — концептуальная война, обостряющаяся по ходу процесса.
Из сказанного следует, что алгоритм динамического программирования и рис. 9, иллюстрирующий некоторые аспекты его приложений, являются довольно прозрачным намеком на весьма серьезные жизненные обстоятельства.
Чтобы метод динамического программирования можно было изпользовать для оптимизации переходного процесса, описанного в форме последовательности преемственных производственных циклов, необходимо в структуру уравнений межотраслевых балансов ввести в явном виде вектор управляющего воздействия. В противном случае основное рекуррентное соотношение метода