Это утверждение достаточно очевидно, поскольку Ф – примитивный элемент поля GF(N+1), т.е. множество значений Ф,Ф2
,…,ФN совпадает со множеством {1,2,…,N} – мультипликативной группой поля GF(N+1), а логарифмирование – операция, обратная возведению в степень. Все проблемы с нулем подправляются вторым условием: П(х) = logФр, если Фx+roр=0.Такие подстановки естественно назвать
Здесь и всюду далее нам будут встречаться два разных типа арифметических операций сложения и вычитания: в кольце Z/N и в поле GF(N+1). Операции в кольце Z/N будем обозначать обычными символами “+” и “-“, а операции в поле GF(N+1) – o и соответственно.
Пусть П – логарифмическая подстановка, х1
х2, х1,х2 ЄZ/N, i – произвольный ненулевой элемент кольца Z/N.Тогда если ни одна из точек х1
+i,x1,х2+i,x2 не является выколотой, то П(х1+i)- П(x1) П(х2+i)- П(x2).Предположим, что П(х1
+i)- П(x1)= П(х2+i)- П(x2), тогда ФП(х1+i)- П(x1)=ФП(х2+i)- П(x2).Поскольку все точки не являются выколотыми, то отсюда вытекает, что (Фх1+i+r
oр)(Фх2+roр)=(Фх2+i+roр)(Фх1+roр).Раскрывая скобки и сокращая одинаковые члены в левой и правой частях равенства, получаем
р (Фx1+i+r
oФx2+r)= р(Фx2+i+roФx1+r)Поскольку р – ненулевой элемент, то отсюда вытекает, что
Фx1+r
(Фi 1)= Фx2+r(Фi 1)Поскольку i – произвольный ненулевой элемент Z/N, а Ф – примитивный элемент GF(N+1), то Фi
1, откуда вытекает, что х1=х2.Тогда для любого ненулевого значения iЄZ/N\{0} из условия, что ни одна из точек x, x+i не является выколотой вытекает, что П(х+i)- П(x) i.
Пусть П(х+i)- П(x) = i. Тогда ФП(х+i)- П(x)
= Фi, откуда Фx+r+ioр=Фi(Фx+roр), следовательно, р=рФi. Отсюда следует, что i=0.Раскинулось поле широко! Операции возведения в степень и логарифмирования в конечном поле позволили ловко избавиться от неопределенности в разности значений подстановки и легко, просто элементарно решить задачу построения матрицы P(П) с минимальным числом нулей. Заметим, что если в определении логарифмических подстановок отказаться от условия, что р – произвольный ненулевой элемент поля GF(N+1), то при р=0 мы получаем обычные линейные подстановки, у которых число нулей в P(П) максимально!
Осталось совсем чуть-чуть: разобраться с выколотой точкой.
Для произвольного ненулевого фиксированного iЄZ/N рассмотрим отображение множества Z/N в Z/N вида:
где П – логарифмическая подстановка. Тогда, в силу теоремы 1, количество различных значений в множестве {
Тогда если при некотором iN/2 в i-ой строке матрицы P(П) справедливо piN/2
>1, то эта строка не содержит нулевых элементов.В силу теоремы 2 достаточно доказать, что pii
0. Условие piN/2>1означает, что либоN/2(N-1) – i +
Отсюда вытекает, что
По коням! Пора заняться средней строчкой.
Начнем с самого любимого элемента – pN/2,N/2
. Ранее мы уже отмечали, что этот элемент должен быть всегда четным (рассуждения для случая N=2n легко обобщаются для произвольного четного N). Следовательно, в логарифмической подстановке возможны только два значения pN/2,N/2: 0 или 2. Допустим, что pN/2,N/2=2. В силу теоремы 2 эти значения может давать только выколотая точка x0 и x+N/2, т.е.П(х
+N/2)- П(х)= П(х+N/2+N/2)- П(х+N/2)= П(х)- П(х+N/2)=N/2.Отсюда вытекает, что 2П(х
+N/2)=2П(х).Рассмотрим два случая.
1. р=1, следовательно, П(х
)=0. Тогда П(х+N/2)=N/2. Имеем:ФП(х0+N/2)
= ФN/2 Фx0+N/2+roр=ФN/2 ФN/2(1 Фx0+r)= р ФN/2(1oр)= р 2ФN/2 = 1.Возводя обе части последнего равенства в квадрат и учитывая, что ФN
=1, получаем такое равенство возможно только в тривиальном поле из 3 элементов.2. р1, следовательно, П(х
) =N/2, П(х+N/2)=0, откудаФП(х0+N/2)
= 1 Фx0+N/2+roр=1 р(1 ФN/2)= 1 ФN/2= 1 р-1.Возводя это равенство в квадрат, получаем значение р:
р=2-1
С учетом условия П(х
) =N/2 получаем: logФ2-1 = N/2, откуда 2-1 =ФN/22-2 =1. Такое также возможно только в тривиальном поле из 3 элементов.