Читаем Криптография и свобода полностью

Если же мы вместо битов переходим к байтам, то появляется много нового. Традиционные операции с байтами можно осуществлять несколькими способами. Например, сложение и вычитание могут быть с переносом или без переноса, т.е. или это будут операции в кольце вычетов по модулю 256, или покоординатное сложение бит. Но самое интересное обобщение происходит с операцией отрицания. Отрицание (инверсия) бита – это фактически подстановка на множестве из 2 элементов. Когда всего 2 элемента, то мощность симметрической группы S2 составляет всего 2! = 2, всего две подстановки: тривиальная единичная (ничего не меняется) и инверсия, когда 0 переходит в 1, а 1 – в 0. Мощность же симметрической группы S256 составляет 256! – совершенно фантастическое число. Введение подстановки в регистр сдвига, работающий с байтами, а не с битами, переворачивает все привычные методы криптографического анализа. Совершенно другие операции, а следовательно, нужны и другие подходы к анализу и оценке стойкости таких схем, чем те, которые использовались в традиционных двоичных «балалайках».

С чего начала кафедра математики на 4 факультете? С самого простейшего преобразования, осуществляемого с n-мерными двоичными векторами, с преобразования типа (Gπ)k, где G – группа, порожденная циклическим сдвигом (G = , g =(0,1,…,2n-1)-циклическая подстановка), π - некоторая фиксированная подстановка из S2n, а k – некоторое целое число.

Если здесь перейти от математических терминов из теории групп к обычной криптографической терминологии, то преобразование типа (Gπ)k – это следующий узел.



Преобразования типа (Gπ)k - это, фактически множество подстановок вида gx1π gx2π… gxkπ, и задачей кафедры математики было обосновать какие-то свойства подобного множества, найти их зависимости от подстановки π. Типичная криптографическая ситуация – когда в таком узле входное слово x1,x2,…xk является ключевым параметром, требуется найти подходы к его определению по нескольким известным переходам в реализуемой подстановке.

Кафедра начала с изучения группы , т.е. группы, порожденной двумя подстановками: циклическим сдвигом g и фиксированной произвольной подстановкой π. Это естественное обобщение преобразования (Gπ)k, предельный случай. Свойства группы дают ответ на вопрос, что в принципе можно ожидать от нашего преобразования при увеличении длины k до бесконечности. Можем ли мы таким путем получить все подстановки или же есть какие-то запреты?

Оказалось, что если случайно и равновероятно выбрать из всей симметрической группы фиксированную подстановку π, то с вероятностью, близкой к 1, группа будет совпадать со всей симметрической группой, т.е. запретов не будет. Те подстановки π, для которых это не так, очень часто легко определяются, например, π=g, а также любая линейная подстановка, реализующая преобразование вида π(x) = ax+b, где a и b – фиксированные элементы из Z/2n.

Дальше, естественно, стали возникать вопросы: а как скоро мы сможем достичь симметрической группы? Какова будет мощность слоя (Gπ)k при некотором значении k, например, при k=2 или при k=3? При каком k множество (Gπ)k станет 2-транзитивным, т.е. по имеющимся в нем подстановкам любая пара (y1,y2), в которой y1≠y2, сможет перейти в любую пару (z1,z2), в которой z1≠z2? Что в общем случае можно будет сказать про обобщение 2-транзитивности – m-транзитивность?

За свойство 2-транзитивности взялись основательно, чувствовалось, что здесь могут быть интересные криптографические зацепки: если 2-транзитивность отсутствует, то появляются запреты переходов биграмм текста, широкое поле деятельности для криптоаналитика. Например, если π - упомянутая выше линейная подстановка, то для любой пары (y1,y2) будет справедливо соотношение:

π(y1)- π(y2) = (ay1+b) - (ay2+b) = a(y1-y2)

В этом случае при применении подстановки π сохраняется соотношение между разностями знаков, а поэтому кратной транзитивности заведомо не будет.

Перейти на страницу:

Похожие книги

100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
Афганистан. Честь имею!
Афганистан. Честь имею!

Новая книга доктора технических и кандидата военных наук полковника С.В.Баленко посвящена судьбам легендарных воинов — героев спецназа ГРУ.Одной из важных вех в истории спецназа ГРУ стала Афганская война, которая унесла жизни многих тысяч советских солдат. Отряды спецназовцев самоотверженно действовали в тылу врага, осуществляли разведку, в случае необходимости уничтожали командные пункты, ракетные установки, нарушали связь и энергоснабжение, разрушали транспортные коммуникации противника — выполняли самые сложные и опасные задания советского командования. Вначале это были отдельные отряды, а ближе к концу войны их объединили в две бригады, которые для конспирации назывались отдельными мотострелковыми батальонами.В этой книге рассказано о героях‑спецназовцах, которым не суждено было живыми вернуться на Родину. Но на ее страницах они предстают перед нами как живые. Мы можем всмотреться в их лица, прочесть письма, которые они писали родным, узнать о беспримерных подвигах, которые они совершили во имя своего воинского долга перед Родиной…

Сергей Викторович Баленко

Биографии и Мемуары