Читаем Криптономикон, часть 1 полностью

Если, скажем, у звездочки двадцать зубцов (n = 20), а в цепи сто звеньев (l = 100), то после первого поворота колеса мы имеем C = 20, после двух поворотов C = 40, потом 60, 80 и 100. Однако поскольку мы ищем остаток от деления на 100, значение надо изменить на ноль. Таким образом, после пяти оборотов колеса мы достигли состояния (Q = 0, C = 0) и цепь Тьюринга сваливается. За пять оборотов колеса он проезжает всего десять метров, поэтому при таких значениях l и n велосипед практически бесполезен. Разумеется, все это верно лишь в том случае, если Тьюринг такой дурак, чтобы начать движение из состояния спадения цепи. Если же он начинает крутить педали, когда велосипед находится в состоянии (Q = 0, C = 1), то C принимает значения 21, 41, 61, 81, 1, 21, … и так до бесконечности, и цепь не свалится никогда. Однако это вырожденное состояние, где «вырожденное» для математика означает «невыносимо скучное». В теории, если Тьюринг будет всякий раз выставлять нужное состояние, прежде чем бросить велосипед на улице, никто не сможет его украсть — цепь свалится через первые же десять метров.

Если же в цепи Тьюринга сто одно звено (l = 101), то после пяти оборотов мы имеем C = 100, а после шести C = 19, тогда

C = 39, 59, 79, 99, 18, 38, 58, 78, 98, 17, 37, 57, 77, 97, 16, 36, 56, 76, 96, 15, 35, 55, 75, 95, 14, 34, 54, 74, 94, 13, 33, 53, 73, 93, 12, 32, 52, 72, 92, 11, 31, 51, 71, 91, 10, 30, 50, 70, 90, 9, 29, 49, 69, 89, 8, 28, 48, 68, 88, 7, 27, 47, 67, 87, 6, 26, 46, 66, 86, 5, 25, 45, 65, 85, 4, 24, 44, 64, 84, 3, 23, 43, 63, 83, 2, 22, 42, 62, 82, 1, 21, 41, 61, 81, 0.

Так что состояние (Q = 0, C = 0) не будет достигнуто и цепь не свалится, пока колесо не совершит сто один оборот. За сто один оборот велосипед Тьюринга успевает проехать по дороге пятую часть километра, что совсем не так плохо. Значит, велосипед работающий. Однако в отличие от вырожденного случая его нельзя привести в такое состояние, чтобы цепь не спадала совсем. Это легко доказать, просмотрев приведенный список значений C и убедившись, что все возможные значения — все числа от одного до ста — в нем присутствуют. Это означает, что с какого бы значения C Тьюринг ни начал крутить педали, рано или поздно он придет к фатальному C = 0 и цепь свалится.

Разница между вырожденным и невырожденным случаем заключена в свойствах использованных чисел. Комбинация (n = 20, l = 101) принципиально отличается от комбинации (n = 20, l = 100). Главная разница в том, что 20 и 101 — «взаимно простые», т. е. у них нет общих делителей. Это означает, что их наименьшее общее кратное, их НОК — большое число и равняется собственно ln, т. е. 20 x 101 = 2020. А вот НОК ста и двадцати — всего 100. У велосипеда с l = 101 длинный период — он проходит через множество различных состояний, прежде чем вернуться к исходному, а у велосипеда с l = 100 — короткий, всего из нескольких состояний. Предположим, что велосипед Тьюринга — шифромашина, основанная на алфавитной замене, т. е. заменяет каждую из двадцати шести букв английского алфавита какой-то другой буквой. A открытого текста может стать T шифртекста, B — F, C — M и так дальше до Z. Сам по себе такой шифр до смешного прост, взломать его — детская забава. Однако предположим, что схема замены меняется от буквы к букве. Первая буква открытого текста шифруется с помощью одного алфавита замены, вторая — с помощью другого, третья — с помощью третьего и так далее. Это называется полиалфавитный шифр.

Предположим, что велосипед Тьюринга генерирует свой алфавит для каждого из состояний. Тогда состоянию (Q = 0, C = 0) будет соответствовать, например, такой алфавит замены:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Q G U W B I Y T F K V N D O H E P X L Z R C A S J M

а состоянию (Q = 180, C = 15) — такой:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

B O R I X V G Y P F J M T C Q N H A Z U K L D S E W

Никакие две буквы не будут зашифрованы одним и тем же алфавитом замены, пока велосипед не вернется в исходное состояние (Q = 0, C = 0) и цикл не пойдет с начала. То есть это периодическая полиалфавитная система. Теперь, если период у машины короткий, она часто повторяет саму себя и в качестве шифровальной системы тоже годится исключительно для детской забавы. Чем длиннее период (чем больше взаимно простых чисел в него встроено), тем реже используется один и тот же алфавит замены и тем выше устойчивость шифра.

Перейти на страницу:

Похожие книги

Диско 2000
Диско 2000

«Диско 2000» — антология культовой прозы, действие которой происходит 31 декабря 2000 г. Атмосфера тотального сумасшествия, связанного с наступлением так называемого «миллениума», успешно микшируется с осознанием культуры апокалипсиса. Любопытный гибрид между хипстерской «дорожной» прозой и литературой движения экстази/эйсид хауса конца девяностых. Дуглас Коупленд, Нил Стефенсон, Поппи З. Брайт, Роберт Антон Уилсон, Дуглас Рашкофф, Николас Блинко — уже знакомые русскому читателю авторы предстают в компании других, не менее известных и авторитетных в молодежной среде писателей.Этот сборник коротких рассказов — своего рода эксклюзивные X-файлы, завернутые в бумагу для психоделических самокруток, раскрывающие кошмар, который давным-давно уже наступил, и понимание этого, сопротивление этому даже не вопрос времени, он в самой физиологии человека.

Дуглас Рашкофф , Николас Блинко , Николас Блинкоу , Пол Ди Филиппо , Поппи З. Брайт , Роберт Антон Уилсон , Стив Айлетт , Хелен Мид , Чарли Холл

Фантастика / Проза / Контркультура / Киберпанк / Научная Фантастика