XVIII века Якоб Бернулли, дядя упоминавшегося ранее Даниила Бернулли, указывал, что, поскольку результат события строго определен соотношением вероятностей (в нашей задаче 1:1), распределение реальных событий будет подчиняться этому соотношению при достаточно большом числе испытаний. Пуассон обогатил эту идею в 1835 году прекрасным названием «закон больших чисел», наглядно демонстрирующим, что чистая случайность отдельных событий статистически приводит к детерминированному результату при достаточно большом числе таких случайных событий. Оказалось, что случайности сами по себе не мешают событиям протекать предсказуемым образом.
Понятно, что соотношение 50:50 не гарантируется, т. е. наблюдается не всегда. В серии из 10 бросков нас нисколько не удивит выпадение 4 орлов и 6 решек с большим отклонением (20%) от ожидаемого среднего. При сотне бросков мы можем получить 49 орлов и 51 решку с той же разницей в 2 единицы, которые, однако, будут соответствовать уже 2% отклонения от среднего. В следующей серии из 100 бросков могут выпасть 52 орла и 48 решек, и т.д. Де Муавр показал, что при очень большом количестве серий с достаточно большим числом бросков получаемые нами результаты будут всегда прекрасно укладываться на кривую нормального распределение
Естественно, возникло желание описать форму кривой математическим уравнением и получить возможность предсказывать вероятность определенных результатов в серии бросков. Расчет оказался совсем не тривиальной задачей для математиков XVIII века и потребовал очень сложных вычислений, учитывая неразвитую технику того времени. Однако в конце концов Муавр сумел аппроксимировать кривую достаточно простым математическим уравнением, позволяющим производить расчеты с высокой точностью.
Мы можем рассматривать отклонения от соотношения 50:50 при бросании монет в качестве ошибок, сдвигающих «результаты измерения» в сторону от «истинного» значения. Это может показаться каким-то извращением или обманом, поскольку ранее уже было заявлено, что броски совершаются совершенно честно, так что речь может идти не об ошибке, а о какой-то непонятной случайности. Однако в 1770-х годах Лаплас осознал, что ошибки измерений также являются результатом действия не поддающихся расчету (или слишком сложных для количественной оценки) факторов, вызывающих случайные отклонения от истинных значений. После этого Лаплас и другие астрономы стали пользоваться приближенной формулой Муавра для оценки ошибок в своих астрономических измерениях.
В начале XIX столетия французский математик Жозеф Фурье (1768— 1830) также начал широко применять в расчетах нормальное распределение. Будучи директором Бюро департамента статистики, он опубликовал несколько статей по вопросам демографической статистики, способствуя знакомству научной общественности с этой кривой. Лаплас также пытался применить уравнение Муавра в задачах, связанных с социальной статистикой. В 1781 году он показал, что примерное равенство числа рождений мальчиков и девочек в Париже, что традиционно считалось свидетельством божественного Провидения, представляет собой просто следствие уравнения Муавра для случайного процесса с двумя равновероятными исходами, а отклонения от него прекрасно укладываются на кривую ошибок.
Ознакомившись с работами Лапласа, Кетле был настолько поражен ролью нормального распределения, что даже стал считать, что именно оно является фундаментальным уравнением, описывающим любые демографические процессы. В 1844 году ему удалось продемонстрировать, что статистические данные о параметрах сложения человека — высоте и обхвату — также отлично укладываются на «горб» нормального распределения, что казалось ему проявлением порядка и закономерности в природе вообще. В качестве еще одного примера предлагаю читателю посмотреть на толпу пешеходов на какой-нибудь оживленной городской улице. На первый взгляд покажется, что во внешних габаритах людей на улице нет и не может быть никакой упорядоченности (понятно, в разумных пределах), однако читатель может быть уверен, что, собрав статистические данные относительно сложения, веса и т. п. всей этой массы прохожих, он получит данные, которые прекрасно согласуются с описанным колоколообразным распределением.
УПОРЯДОЧЕННОЕ ПОВЕДЕНИЕ