Подобно газам жидкости состоят из очень большого числа быстро и хаотически движущихся молекул, однако в жидкости действуют также силы сцепления (или, по-научному, когезии) — вспомним, как слипаются капли дождя при падении. Еще в 1806 году Лаплас связывал когезию с взаимным притяжением частиц, и наличие такого притяжения позволило объяснить давно известный феномен поверхностного натяжения — формирования на поверхности любой жидкости своеобразной пленки, или «кожицы».
Кинетическая теория газов не учитывала наличие этих сил. Причиной такого пренебрежения выступало вовсе не то, что в газах силы притяжения отсутствуют, а в самом характере этих взаимодействий. Дело в том, что они являются, как говорят физики, короткодействующими, и ими можно пренебрегать, если молекулы находятся далеко друг от друга, хотя бы на расстояниях больше их собственных размеров, вследствие чего в разреженных газовых системах эти силы практически не проявляют себя. Пытаясь описать давление жидкости, ван дер Ваальс ввел силы притяжения, в его модели жидкость напоминала плотный газ. Кроме этого, ван дер Ваальсу удалось учесть еще одну существенную поправку. Исходя из малости размеров молекул, основатели кинетической теории считали их точечными объектами, обладающими только массой, но не геометрическими параметрами. Ван дер Ваальс справедливо рассудил, что в жидкостях, плотность которых значительно выше, чем у газов, необходимо учитывать и собственный объем молекул, т. е. его следует вычитать из полного объема сосуда, заполненного жидкостью.
Обе указанные идеи, строго говоря, не являлись новыми. На необходимость учета размера молекул Даниил Бернулли указывал еще в XVIII веке[31]
, а в 1863 году французский ученый Густав-Адольф Хирн рассматривал задачу о поведения газа при одновременном учете объема молекул и межмолекулярных сил притяжения. Кроме того, к этому времени уже было известно, что поведение многих газов может значительно отклоняться от предсказываемого газовыми законами (и кинетической теории, лежащей в их основе), и многие ученые предполагали, что отклонения вызываются именно указанными двумя факторами.Вэн дер Ваальсу удалось соединить в единое целое все эти соображения и расчеты в своей диссертации «О непрерывности жидкого и газового состояний». Исходя из некоторых гипотез относительно размеров молекул[32]
и действующих между ними сил, ван дер Ваальс обнаружил, что в некоторых диапазонах давления и температуры флюиды могут существовать при двух различных значениях плотности. Более высокую плотность ван дер Ваальс приписал жидкому состоянию вещества, а низкую — газообразному. Кроме того, он указал, что в этих точках сжатие или охлаждение газа делают его состояние неустойчивым и могут мгновенно «превращать» его в жидкость. И наконец, ван дер Ваальс связал такие превращения с фазовыми переходами[33].Особое внимание ученых всегда привлекал внезапный и резкий характер описываемых процессов, действительно таящий в себе нечто загадочное. Вы медленно охлаждаете газ, процесс протекает спокойно и гладко, но вдруг — Бумм! — в сосуде плещется жидкость. Ван дер Ваальс показал, что плотность флюида не может быть произвольной, а может принимать лишь два значения, одно из которых очень мало (газообразное состояние), а второе очень велико (жидкое состояние). Никаких промежуточных значений у плотности нет, так что система частиц может находиться лишь в одном из двух
Вернемся к вопросу о