Читаем Критика чистого разума полностью

Следовательно, существенное различие между этими двумя видами познания разумом заключается в этой их форме, а не основывается на различии между их материей или предметами. Те, кто пытается отличить философию от математики, полагая, что первая имеет объектом только качество, а вторая -только количество, принимают действие за причину. Форма математического познания есть причина того, что оно может быть направлено только на количества. В самом деле, конструировать, т. е. представить a priori в созерцании, можно только понятия величины, а качества можно показать не иначе как в эмпирическом созерцании. Поэтому их познание разумом возможно только посредством понятий. Так, созерцание, соответствующее понятию реальности, мы можем извлечь только из опыта, но никогда a priori из самих себя и до эмпирического осознания ее Коническую фигуру мы можем сделать наглядной просто на основании понятия, без всякой помощи опыта, но цвет этого конуса должен быть дан заранее в каком-нибудь опыте. Понятие причины вообще я никак не могу показать в созерцании иначе как с помощью примера, данного мне опытом, и т. д. Впрочем, философия занимается и величинами, так же как математика, например, целокупностью, бесконечностью и т. д. В свою очередь математика занимается и различием между линиями и плоскостями как пространствами, обладающими различным качеством, а также непрерывностью протяженности как ее качеством. Но хотя в таких случаях они имеют общий предмет, тем не менее способ рассмотрения его разумом в философском и математическом исследованиях совершенно различен. Философия держится только общих понятий, а математика ничего не может добиться посредством одних лишь понятий и тотчас спешит [перейти] к созерцанию, в котором она рассматривает понятие m concrete, однако не эмпирически, а лишь в таком созерцании, которое она показывает a priori, т. е. конструировала, и в котором то, что следует из общих условий конструирования, должно быть приложимо также и к объекту конструируемого понятия.

Дайте философу понятие треугольника, и пусть он найдет свойственным ему способом, как относится сумма его углов к величине прямого угла. У него есть только понятие фигуры, ограниченной тремя прямыми линиями, и вместе с ней понятие о таком же количестве углов. Сколько бы он ни размышлял над этим понятием, он не добудет ничего нового. Он может расчленить и сделать отчетливым понятие прямой линии, или угла, или числа три, но не откроет новых свойств, вовсе не заключающихся в этих понятиях. Но пусть за тот же вопрос возьмется геометр. Он тотчас начнет с конструирования треугольника. Зная, что два прямых угла имеют такую же величину, как все смежные углы, исходящие из одной точки и лежащие на одной прямой, он продолжает одну из сторон своего треугольника и получает два смежных угла, сумма которых равна двум прямым углам. Внешний из этих углов он делит, проводя линию, параллельную противоположной стороне треугольника, и замечает, что отсюда получается внешний смежный угол, равный внутреннему, и т. д. Так, руководствуясь все время созерцанием, он цепью выводов приходит к совершенно очевидному и вместе с тем общему решению вопроса.

Математика конструирует не только величины (quanta), как это делается в геометрии, но и величину как таковую (quantitas), как это делается в алгебре, совершенно отвлекающейся от свойств предмета, который должно мыслить согласно такому понятию величины. Она избирает себе при этом определенные обозначения для всех конструировании величин вообще (чисел), каковы сложение, вычитание, извлечение корня и т. д; затем, обозначив общее понятие величин в их различных отношениях, она изображает в созерцании соответственно определенным общим правилам все операции, производящие и изменяющие величину, когда одна величина должна быть разделена другой, она соединяет их знаки по обозначающей форме деления и т. п. и таким образом с помощью символической конструкции, так же как геометрия с помощью остенсивной, или геометрической, конструкции (самих предметов), достигает того, чего дискурсивное познание посредством одних лишь понятий никогда не может достигнуть.

Перейти на страницу:

Похожие книги

Что такое «собственность»?
Что такое «собственность»?

Книга, предлагаемая вниманию читателя, содержит важнейшие работы французского философа, основоположника теории анархизма Пьера Жозефа Прудона (1809–1865): «Что такое собственность? Или Исследование о принципе права и власти» и «Бедность как экономический принцип». В них наиболее полно воплощена идея Прудона об идеальном обществе, основанном на «синтезе общности и собственности», которое он именует обществом свободы. Ее составляющие – равенство (условий) и власть закона (но не власть чьей–либо воли). В книгу вошло также посмертно опубликованное сочинение Прудона «Порнократия, или Женщины в настоящее время» – социологический этюд о роли женщины в современном обществе, ее значении в истории развития человечества. Эти работ Прудона не издавались в нашей стране около ста лет.В качестве приложения в книгу помещены письмо К. Маркса И.Б. Швейцеру «О Прудоне» и очерк о нем известного экономиста, историка и социолога М.И. Туган–Барановского, а также выдержки из сочинений Ш.О. Сен–Бёва «Прудон, его жизнь и переписка» и С. — Р. Тайлландье «Прудон и Карл Грюн».Издание снабжено комментариями, указателем имен (в fb2 удалён в силу физической бессмысленности). Предназначено для всех, кто интересуется философией, этикой, социологией.

Пьер Жозеф Прудон

Философия / Образование и наука