Управление программируемой гибелью клеток (апоптозом). Апоптоз — контролируемая гибель клеток, которая является одним из защитных механизмов растений, когда в ответ на атаку патогена происходит синтез цитотоксичных соединений в пораженных клетках и локальная гибель клеток — так называемая сверхчувствительность. В процессе развития растений программированная гибель клеток (ПГК) наблюдается при старении органов, созревании плодов, ксилогенезе, старении створок бобов и тд. В клетках, претерпевающих ПГК, отмечается активность протеаз и нуклеаз, деградирующих белки и нуклеиновые кислоты. Эти протеазы включают цистеиновые, металлотиониновые, сериновые протеазы, а также ингибиторы аспарагиновой кислоты.
В настоящее время еще не ясны детали ПГК клеток растений, однако уже показано, что основные этапы ПГК клеток животных и растений одинаковы.
Морфологически это наблюдается в виде сморщивания цитоплазмы, конденсации ядра, образовании везикул мембран. Биохимические изменения включают приток ионов кальция, высвобождение фосфатидилсерина, активацию специфических протеаз, фрагментацию ДНК.
Проникающий в клетку инфекционный агент использует клетки растения-хозяина как субстрат для своего роста, развития и размножения. Одним из путей защиты растений является гибель инфицированных клеток. В то же время, субстратом некоторых грибов являются именно мертвые клетки.
Поэтому предотвращение гибели клеток в некоторых случаях делает невозможным рост и развитие патогена, что препятствует его распространению у растения. В этой связи разрабатываются методы контроля апоптоза.
Разработка приемов управления апоптозом путем использования ДНК-технологий — один из путей повышения иммунитета растений к инфекциям. Это достигается путем введения генов, которые управляют апоптозом.
Приведем несколько примеров таких работ.
Предотвращение гибели клеток в некоторых случаях делает невозможным рост и развитие паразита, чем препятствует его распространению в растении. Гриб Sclerotinia sclerotiorum выделяет токсин, летальный для клеток растений хозяев, и использует вещества мертвых клеток для питания. Растения табака были трансформированы геном нематоды CED-9, который ингибировал апоптоз. Трансгенные растения имели повышенную резистентность к данному возбудителю и останавливали его распространение из точки инокуляции. Данная работа интересна не только тем, что предлагает новую стратегию усиления механизмов защиты растений, но и тем, что демонстрирует общность путей контроля апоптоза у растений и животных (Dickman). Трансгенные томаты, несшие ген бакуловируса р35, ингибирующий апоптоз, также имели усиленную резистентность к возбудителям грибковых и бактериальных инфекций. К подобным выводам пришел Дэвид Гилчрист (Калифорнийский университет), выполняя работу по изучению действия микотоксинов на клетки животных и растений. Он сообщил, что один из токсинов (сфинганин), который вызывает лизис тканей мозга лошадей, также вызывает апоптоз у инфицированных растений. Был также сделан вывод, что грибы создают себе субстрат путем стимулирования апоптоза, поэтому его ингибирование может предотвращать развитие грибной инфекции.
Подход, обратный описанному выше, и заключающийся в стимулировании апоптоза, также может быть использован для защиты растений от инфекций.
Компанией Монсанто разработан способ получения трансгенных растений, устойчивых как к бактериальной, так и грибной инфекции. В картофель вводят грибной ген, кодирующий синтез фермента, окисляющего глюкозу с образованием пероксида водорода. Полученные растения устойчивы и к мягкой гнили, и к фитофторе.
Относительно недавно открыты короткие пептиды, богатые остатками цистеина, обладающие антимикробными свойствами. Они названы дефензинами.
В настоящее время созданы трансгенные растения томатов, картофеля, рапса, моркови, яблони и груши с геном дефензинов редьки. Аналогичная работа проводится по созданию трансгенной капусты и малины.
Устойчивость к вирусам и вироидам
Одним из первых достижений в защите растений методами генетической инженерии явилось создание трансгенных растений, устойчивых к вирусам, путем встройки в геном хозяина генов белков вирусной оболочки.
Устойчивость обычно ограничена только вирусом, ген оболочки которого трансформирован в донорное растение. Причем эта устойчивость может быть настолько специфической, что может проявляться только для мутантной формы вируса и не срабатывать для вируса дикого типа, если введен ген белка оболочки этого мутантного вируса.