В мире наблюдается глобальное падение эффективности возделывания зерновых (no Tilman et al., 2002). С 1960 г по 2000 глобальная продуктивность зерновых возросла примерно в 2,3 раза, в том числе и в расчете на 1 гектар. В то же время вклад в увеличение урожайности зерновых с 1960 по 2000 г увеличился: воды — в 2 раза, азотных удобрений — в 10 раз, фосфорных удобрении — в 7,5 раз, пестицидов — в 6 раз. Эффективность вклада азотных удобрений в получение урожая зерновых с 1960 г по 2000 г упала в 4 раза.
Для современного сельского хозяйства характерны экспоненциальный рост затрат невосполнимой энергии на каждую дополнительную единицу продукции (в том числе пищевую калорию), нарушение экологического равновесия в агроэкосистемах и агроландшафтах, все большая их генетическая однотипность и уязвимость, а также усиливающаяся зависимость от нерегулируемых факторов внешней среды и применения антропогенной энергии. Парадоксальность сложившейся в XXI столетии ситуации в сельском хозяйстве состоит в том, что отрасль, базирующаяся на использовании неограниченных и экологически безопасных ресурсах Солнца и биосферы, оказалась в числе наиболее ресурсо- и энергорасточительных и природоопасных. Так, если бы все страны расходовали на 1 га сельхозугодий такое же количество ископаемой энергии, как в США и Западной Европе, то 80% мировых энергоресурсов пришлось бы тратить только на сельское хозяйство. Односторонняя, преимущественно химико-техногенная интенсификация земледелия в промышленно развитых странах, как, впрочем, и стихийная экстенсификация агропромышленного комплекса в странах СНГ и Восточной Европы, не позволяют перейти к ресурсосберегающим и экологичным технологиям.
Наблюдается усиление зависимости вариабельности величины и качества урожая от нерегулируемых факторов внешней среды, доля которых по основным зерновым культурам превышает 60%.
Потенциальная урожайность сортов и гибридов реализуется лишь на 25-40% вследствие недостаточной, а зачастую и снижающейся устойчивости растений к действию абиотических и биотических стрессоров. Снижается экологическая устойчивость и качество урожая, а также средоулучшающих (почвозащитных, фитосанитарных и др.) и ресурсовосстанавпивающих свойств сортов и гибридов растений при достижении ими высокой потенциальной урожайности.
В глобальном масштабе наблюдается недостаточная приспособленность сортов и гибридов к конструированию высокопродуктивных, экологически устойчивых и эстетических агроэкосистем и агроландшафтов
Снижение производства зерновых на душу населения в глобальном масштабе, увеличение производства животноводческой продукции — результат истощения растениеводством почв агросистем.
Исходно разработка методов трансгеноза у сельскохозяйственных животных и растений обосновывалась необходимостью конструкции новых геномов, обеспечивающих более высокую продуктивность и устойчивость к неблагоприятным воздействиям. Существенные практические достижения в этом направлении получены у растений.
Ученые настроены чрезвычайно оптимистично. Вдохновенно обсуждают планы применения генной инженерии для получения чудо-растений. Однако далеко не все разделяют оптимизм исследователей. В США намерение биологов перейти в ближайшее время от лабораторных опытов к испытаниям в природных условиях все новых сортов ГМ растений вызывает активный протест защитников окружающей среды. Противники генной инженерии требуют запретить генетические манипуляции над растениями в природных условиях. Их путает возможность создания устойчивого к засухам, гербицидам и холоду вида растений, который, выйдя из-под контроля, начнет бурно размножаться и вытеснит всю дикорастущую флору.
В то же время, рекомбинантные ДНК-технологии продолжают осваивать все новые и новые сферы человеческой деятельности.
Так, например, ведутся работы по созданию биологического «антифриза». Убытки, связанные с заморозками, составляют в США более миллиарда долларов в год. И, как выяснилось, во многом тут виноваты бактерии. Именно они способствуют образованию губительных кристалликов льда. При отсутствии на поверхности листьев бактерий видов Pseudomonas syringae и Erwinia herbicola вода на растениях с падением температуры не замерзает, а становится переохлажденной. Растения при этом могут выдерживать температуру до -8 о
С. Заморозки вредят растениям, только если на них образуется лед. А для начала кристаллизации сверхохлажденной воды нужны «ядра» или «центры» кристаллизации. Этими «ядрами» и служат бактерии упомянутых видов. На них-то и «нанизываются» образующиеся кристаллики льда.Сначала американские ученые (Висконсинский университет) пытались бороться с бактериями, опрыскивая поле стрептомицином. Но ясно, что широкое использование этого средства неблагоприятно скажется на окружающей среде. Поэтому тактику борьбы пришлось поменять. Было решено натравить на бактерии убивающие их вирусы — бактериофаги.