Читаем Крушение парадоксов полностью

Томас Юнг начал заниматься физикой и математикой в восьмилетнем возрасте, когда большинство детей лишь начинает знакомиться с азбукой и арифметикой. Через год он приступил к изучению иностранных языков, а также латинского, греческого, древнееврейского и арабского. В это время его главным увлечением стала ботаника. Казалось, мальчика ожидает судьба большинства вундеркиндов — популярность в детстве и быстрое забвение. Но Юнг избежал столь печальной участи. В двадцать лет он опубликовал «Наблюдения над процессом зрения». Здесь на основе своих опытов он поставил под сомнение корпускулярную теорию света, уже, безусловно, отождествлявшуюся с именем Ньютона, и высказался за волновую теорию.

Его дерзость вызвала бурю. Под давлением критики правоверных ньютонианцев Юнг признал необоснованность своих взглядов и на время прекратил занятия оптикой. Он усиленно трудился, готовясь к получению диплома доктора медицины.

Однако мысли о природе света не были оставлены. Опубликованный Юнгом в 1800 году трактат «Опыты и проблемы по звуку и свету» позволяет отчасти заглянуть не только в его физический кабинет, но и в ту чисто психологическую сферу, которую теперь принято называть творческой лабораторией ученого. Юнг упоминает о том месте из третьей книги знаменитого труда Ньютона — «Математические начала натуральной философии», где говорится о работах астронома Галлея, наблюдавшего аномально высокие приливы, возникающие в некоторых местах Филиппинского архипелага. Ньютон объясняет их взаимным наложением приливных волн.

Хорошему артисту достаточно одного слова суфлера, чтобы свободно провести сложный монолог, конечно, если артист достаточно подготовлен к роли предыдущей самостоятельной работой.

Юнг был готов! Частный пример, относящийся к столь далекой от оптики теории приливов, был толчком, породившим лавину.

«Представьте себе ряд одинаковых волн, бегущих по поверхности озера... Представьте себе далее, что по какой-либо аналогичной причине возбуждена другая серия волн той же величины, проходящих... с той же скоростью одновременно с первой системой волн. Ни одна из этих двух систем не нарушит другой, но их действия сложатся, если... вершины одной системы волн совпадут с вершинами другой системы; если же вершины одной системы волн будут расположены в местах провалов другой системы, то они в точности заполнят эти провалы и поверхность воды останется ровной. Так вот, я полагаю, что подобные явления имеют место, когда смешиваются две порции света; и это наложение я называю общим законом интерференции света».

Чисто умозрительное заключение Юнг подтверждает простым и наглядным опытом. Замечательный опыт Юнга может повторить каждый. В куске картона нужно проколоть булавкой два небольших отверстия и осветить их солнечным светом, проходящим через отверстие в закрытом ставне. На противоположной стене или на специальном белом экране возникнет чередование светлых и темных полос: светлые полосы там, где световые волны, проходящие через оба отверстия, накладываются согласованно (в фазе), а темные — там, где они гасят друг друга (накладываются в противофазе).

Если закрыть одно из отверстий, то полосы исчезают. Остаются лишь дифракционные кольца, которые наблюдал еще Гримальди. Исчезают полосы и при открывании ставня, когда узкий пучок света, падающий на оба отверстия, заменяется широким. Так проводил свои опыты Гримальди и, конечно, не мог обнаружить полос.

Работу Юнга восприняли с недоверием, а его соотечественники — англичане насмехались над дилетантом, покусившимся на великое наследие Ньютона. Но теперь Юнг не сдавался.

Луч из волн

Одновременно с Юнгом, ничего не зная о его работах, оптическими исследованиями занимался еще один дилетант, французский дорожный инженер Огюстен Френель. Он участвовал в борьбе против Наполеона, и во время чисток, проходивших в период «Ста дней» после возвращения Наполеона с Эльбы, Френель уехал в деревню. Здесь он начал систематические исследования в области оптики, Средства его были ограничены, столь же бедными были и его экспериментальные возможности. Но мощь интеллекта и привычка обходиться простыми математическими методами позволяли ему извлекать из примитивных опытов поразительные результаты. А инженерная хватка и требовательность к надежности каждого результата делали его опыты безупречными.

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии
1917 год. Распад
1917 год. Распад

Фундаментальный труд российского историка О. Р. Айрапетова об участии Российской империи в Первой мировой войне является попыткой объединить анализ внешней, военной, внутренней и экономической политики Российской империи в 1914–1917 годов (до Февральской революции 1917 г.) с учетом предвоенного периода, особенности которого предопределили развитие и формы внешне– и внутриполитических конфликтов в погибшей в 1917 году стране.В четвертом, заключительном томе "1917. Распад" повествуется о взаимосвязи военных и революционных событий в России начала XX века, анализируются результаты свержения монархии и прихода к власти большевиков, повлиявшие на исход и последствия войны.

Олег Рудольфович Айрапетов

Военная документалистика и аналитика / История / Военная документалистика / Образование и наука / Документальное