Соображение В -- это гипотеза о неприменимости принципа суперпозиции для достаточно больших (классических) тел. Для таких тел, согласно Эйнштейну (и согласно повседневному опыту!), возможны только состояния с исчезающе малой неопределенностью координаты. Паули обращает внимание на несовместимость этого положения с квантовой механикой: если возможны два состояния со сколь угодно точно определенными положениями, разнесенными, скажем, на один метр, то возможна и суперпозиция этих состояний с равными весами (грубо говоря, сумма состояний справа и слева). В таком состоянии неопределенность координаты будет равна этому самому метру, и нет никаких формальных причин запретить появление таких состояний. Подчеркнем еще раз, что речь идет о принципе суперпозиции -- самом фундаментальном законе квантовой механики. В уравнении Шредингера не заложено никакого ограничения на его применимость только к электрону, но, скажем, не к футбольному мячу. В то же время для футбольного мяча подобные существенно квантовые состояния никогда не наблюдались. Проблема шредингеровской кошки, собственно, в том и состоит, чтобы объяснить -- почему.
Классические объекты существуют эмпирически достоверно. Они даже не должны быть макроскопически большими: скажем, в отношении оптической активности та же молекула сахара должна уже рассматриваться как классический объект, так как ее туннелирование из правой формы в левую и обратно полностью подавлено. Таким образом, мы приходим к главному вопросу: откуда в квантовом мире берутся классические объекты? Что обеспечивает достоверность некоторых (в действительности очень многих!) утверждений об окружающем нас мире? Вопрос этот является весьма сложным (и, безусловно, очень важным!). Здесь мы изложим вариант ответа, который в настоящее время представляется наиболее правдоподобным большинству физиков, занимающихся квантовой механикой (в том числе и авторам).
Наиболее распространенное решение парадокса кошки состоит в следующем. Если мы рассматриваем строго изолированную от внешнего мира систему, то никакой ошибки в рассуждении Шредингера нет. Все изолированные системы, независимо от их размеров, массы и т. д., являются квантовыми и строго подчиняются принципу суперпозиции. Чтобы разобраться в предельном переходе от микрообъектов к макрообъектам, мы должны несколько изменить постановку задачи и рассмотреть открытые системы, взаимодействующие с окружением. Такая задача была впервые поставлена в четкой математической форме Р. Фейнманом в 1963 году. В результате ее тщательного исследования (важную роль здесь сыграли работы В. Журека, Г. Цеха, А. Леггетта и многих других физиков) оказалось, что взаимодействие с окружением разрушает квантовую интерференцию, превращая тем самым квантовую систему в классическую, причем тем быстрее, чем больше масса системы. Для такого объекта как кошка (или даже молекула сахарозы -- но не аммиака!) достаточно уже очень слабой неизолированности, чтобы полностью разрушить квантовые эффекты. Разрушение квантовой интерференции в случае кошки достигается, например, за счет рассеяния на кошке атомов и молекул, входящих в состав воздуха, которым она дышит. Даже частички космической пыли в межгалактическом пространстве нельзя считать квантовыми объектами из-за их взаимодействия с так называемым реликтовым излучением, заполняющим, по современным представлениям, всю Вселенную. Таким образом, классические системы, в том числе измерительные приборы, существуют потому, что они взаимодействуют с окружающим миром. Подробно эти вопросы рассмотрены в недавней книге: D. Giulini, E. Joos, C. Kieper, J. Kupsch, I.-O. Stamatescu, H. D. Zeh. Decoherence and the appearance of a classical world in quantum theory (Berlin, Springer, 1996), рассчитанной, однако, на подготовленного в области физики и математики читателя.
Важно при этом, что некоторые состояния оказываются наиболее устойчивыми по отношению к возмущениям, вносимым окружением. Только такие состояния и реализуются в макромире (они получили название pointer states). В. Журек (W. Zurek) показал, что подобной повышенной устойчивостью обладают так называемые когерентные состояния, в которых неопределенности координаты и скорости частицы минимальны. Согласно высказанной им гипотезе, для квантовой системы, взаимодействующей с окружением, начальное квантовое состояние общего вида разваливается на pointer states. При этом суперпозиции pointer states, вообще говоря, таковыми состояниями не являются. В этом смысле принцип суперпозиции действительно нарушается для открытых, то есть взаимодействующих с окружением, квантовых систем. Именно поэтому в макромире оказывается возможным говорить об определенных значениях координаты и скорости объектов. Отметим, впрочем, что в этой картине еще много неясностей, и математически строгие доказательства ключевых утверждений отсутствуют.
ГЛАВА 12.
Парадокс ЭПР и нелокальность квантового мира