Греческие атомисты не сумели доказать атомизм всего сущего, но Лукреций в своей научно-философской поэме «О природе вещей» привел наглядные доводы в пользу атомной гипотезы, показав заодно, что познание освобождает от страхов. Поэма Лукреция — это гимн разуму и познанию, что вполне соответствовало устремлениям Ньютона и Максвелла.
К тому же они знали, что античные атомисты жили в мире многобожия: в поэме Лукреция слово «бог» употребляется лишь во множественном числе. Античный атеизм отрицал именно многобожие, и можно понять почему: олимпийским богам нечего делать в мире атомов, закономерно движущихся в пустоте. Само понятие закономерности несовместимо с прихотями олимпийцев. Аполлон велит атому лететь направо, Артемида — налево, так кого слушать? Библейское же представление о едином Боге-законодателе в античный мир еще не проникло.
Атомная гипотеза привлекала и Галилея и Ньютона, хоть и не привела их к осязаемым достижениям. Но к середине двадцатого века достижений было уже столько, что физик Ричард Фейнман подытожил:
Если бы некий катаклизм уничтожил все научные знания и к грядущим поколениям дошло бы только одно утверждение, то какое, составленное из наименьшего количества слов, содержало бы наибольшую информацию? Думаю, атомная гипотеза: все вещи состоят из атомов — маленьких частиц, которые беспрерывно движутся, притягивая друг друга на некоем расстоянии и отталкивая при большом сжатии. В одной этой фразе огромное количество информации о мире, стоит лишь приложить немного воображения и подумать.
Первые физические доводы в пользу атомов появились в семнадцатом веке, когда возникла идея о том, что давление газа на стенку сосуда — это результат ударов атомов, составляющих газ и движущихся беспорядочно во всех направлениях. Такое движение атомов рождает также ощущение тепла: чем быстрее атомы движутся, тем горячее. Из этой идеи, однако, не удалось извлечь измеримых следствий, и верх взяла идея попроще: тепло — это невидимая жидкость, перетекающая от горячего тела к холодному при их контакте.
На помощь атомной физике пришли химики, которые в начале девятнадцатого века заметили, что вещества вступают в химические реакции в целочисленных пропорциях типа 1:1, 1:2, 1:3, 2:3 и тому подобные. Это дало основание предположить, что суть химических реакций — соединение атомов, которые почему-то соединяются лишь с определенным числом других атомов. Такие соединения атомов — минимальные количества химических веществ — назвали молекулами. В простейшем случае молекулой может быть и один атом. Но это все пока — молекулярная химия.
А молекулярная физика создавалась на глазах Максвелла и при активном его участии. В картине атомно-молекулярного движения особенно озадачивала беспорядочность. Ведь наука занимается как раз упорядоченностью мироустройства?! Максвелл сумел обнаружить упорядоченность в беспорядке, когда он максимален, и нашел подходящий математический язык, чтобы описать эту упорядоченность, — теорию вероятностей, или, как говорили раньше, исчисление вероятностей. До Максвелла это исчисление применяли лишь к азартным играм и к скучной статистике. Хотя понятие вероятности, быть может, самое нужное в жизни, которая, как известно, — игра.
В любой порядочной игре не известен следующий ход соперника или судьбы. Но если, как советовал Фейнман, «приложить немного воображения и подумать», то в некоторых случаях можно оценить вероятности разных событий. К примеру, если в коробку с черными шарами в количестве
Если же вместо коробки с шарами взять емкость с газом, то движущиеся молекулы сами себя перемешивают, и поэтому можно спросить, какова вероятность того, что наугад выбранная молекула имеет такую-то скорость. Ответ Максвелла, или максвелловское распределение молекул газа по скоростям, — это первый физический закон, основанный на понятии вероятности.