Чтобы ощутить необычность квантовых законов, вспомним историю о лягушке, попавшей в горшок со сливками. Она стала дрыгать лапками, отчего из сливок сбилось твердое масло, и уже с этой подставки выпрыгнула из горшка. Мораль «не падать духом и дрыгать лапками» годится на все случаи жизни. Почти на все — дело плохо, если сливок в горшке вовсе нет, а лягушачьих сил не хватает, чтобы допрыгнуть до края горшка.
Дело, однако, меняется, если обычный горшок заменить на квантовый — если и горшок, и лягушка имеют атомные размеры. Тогда даже и без сливок лягушка имеет шанс выбраться на волю, если, конечно, не падает духом и прыгает. Шанс есть, даже если она прыгает лишь на полвысоты горшка. А чем выше прыгает, тем вероятнее освобождение — сказочно-квантовое проникновение сквозь стенки горшка, на волю. Этот странный результат квантовой механики, названный позже «туннельным эффектом», обнаружили в конце 1927 года московские теоретики Леонид Мандельштам и Михаил Леонтович, статью которых Гамов прочитал перед отправкой в Европу.
Гамов, можно сказать, уподобил альфа-частицу лягушке и атомное ядро — горшку. Он не знал, из чего сделаны стенки ядерного горшка, но обнаружил, что и без этого знания — на основе квантовых законов — можно получить закономерности альфа-радиоактивности, заодно объяснив новые опыты Резерфорда. Тем самым квантовые законы оказались применимы не только в атоме, но и, хотя бы частично, в ядре. Неудивительно, что первооткрыватель атомных законов Нильс Бор, оценив этот результат, выхлопотал несоветскую стипендию для молодого советского теоретика. И неудивительно, что физика, в которой возможны подобные альфа-лягушки, притягивала умных и веселых молодых людей.
Через год после Гамова еще один умный и веселый советский теоретик, Лев Ландау, отправился в Берлин с наркомпросовской стипендией в кармане. Немецкая физика была тогда сильнейшей в мире, в Берлине жил великий Эйнштейн — так что столицу Германии можно было назвать физической столицей мира. Ландау, однако, вряд ли согласился бы с этим. Да, он считал Эйнштейна не просто великим, а величайшим и созданную им теорию гравитации — самой красивой из физических теорий. Но восхищение перед творениями прошлого не мешало 21-летнему Ландау видеть насущные проблемы физики и считать, что великий Эйнштейн, сделавший важные первые шаги к квантовой теории, пошел не туда.
Оба теоретика оказались однажды на собрании Германского физического общества, и вот что об этом рассказал очевидец (Отто Фриш):
Когда Эйнштейн закончил доклад, председательствующий почтительно предложил задавать вопросы. Тут в задних рядах встал молодой человек и сказал примерно так: «То, что профессор Эйнштейн рассказал нам, не так уж глупо. Однако второе уравнение, строго говоря, не следует из первого. Необходимо предположение, которое не доказано…» Все обернулись, разглядывая смельчака. Все, кроме Эйнштейна, который смотрел на доску и думал. Через минуту он перевел взгляд на аудиторию и сказал: «Молодой человек совершенно прав; забудьте все, что я сегодня вам рассказал».
Не надо думать, что молодой человек — Ландау — упивался своей смелостью. Ему, как и Эйнштейну, было интереснее происходившее на доске и важнее, как соотносятся написанные мелом формулы с устройством природы. То есть он любил саму науку, а не себя в ней. Любил самозабвенно, хотел взаимности, но не грустил, когда взаимность доставалась не ему, а кому-то другому.
После Берлина Ландау отправился в Цюрих, где царил Вольфганг Паули, о котором в гимне Джаз-банда пелось:
Знаменитый принцип Паули выразил новое свойство элементарных частиц. Любые два электрона похожи друг на друга гораздо больше, чем две капли воды. Они абсолютно одинаковы, совершенно неотличимы. Размышляя над подопытными фактами микромира, Паули понял, что кое-что в этих фактах можно объяснить, если одинаковым частицам, подобным электрону, запрещено находиться в одинаковых состояниях. Строжайший запрет — не собираться даже по двое. Так в 1924 году Паули открыл закон природы, совершенно неведомый в мире обыденных явлений, но явления эти объясняющий, — к примеру, почему вещества отличаются друг от друга, как воздух от воды.
К 1929 году, когда Ландау прибыл в Цюрих, в физике зияли две огромные проблемы, о которых пелось в гимне Джаз-банда: