И во всем мире кипит работа. Разрабатываются проекты электротепловых двигателей, в которых реактивный поток частиц разгоняется не только за счет обычного теплового процесса, но и за счет действия на этот поток электрических сил. А вещество, состоящее из этих частиц, нагрето до температуры в десятки тысяч градусов и находится уже не в обычном для тепловых двигателей газообразном состоянии, а в состоянии плазмы — смеси ионов, представляющих собой обломки молекул, атомов и свободных электронов. И думают о том, как бы нагреть поток этих частиц до температур в сотни тысяч градусов и еще больше. Тогда плазменный двигатель превратится в фотонный или квантовый двигатель; энергия, введенная в поток частиц, будет превращаться в световое излучение, а звездолет будет получать ускорение за счет реактивного действия излучаемого им светового пучка.
Разработка звездолетных двигателей — одно из направлений космонавтики, науки, основы которой заложены Циолковским. Космонавтика, если можно так выразиться, — поэзия современной техники. Пока еще в ней фантастики немногим меньше, чем науки. Люди пока еще только догадываются о тех трудностях, с которыми им придется встретиться в завоевании космических пространств. Но ведь так дело обстоит всегда, когда человек берется за новую и грандиозную по своим масштабам задачу.
И может быть, к лучшему, что, еще не зная точно, как нужно решать эту задачу, он в то же время не представляет себе, какие трудности ему придется преодолеть.
Веря в свои силы, он храбро берется за дело, а успешно закончив его, оглянувшись и оценив всю сложность сделанного, удовлетворенно восклицает: «Знал бы — не брался!..», а затем берется за еще более сложную задачу.
Борьба за энергию, как всегда, в самом разгаре. Идет непрерывный процесс создания и совершенствования машин-двигателей — самых различных по назначению, конструкции и принципу действия. Но теперь мы уже знаем, что все они — от первой паровой машины и до еще не существующих плазменного и квантового двигателей — служат одной и той же цели: преобразуют различные виды энергии в механическую.
Человек автоматизировал процессы преобразования энергии и тем самым удесятерил свои силы.
Как ни жаль расставаться с космосом, все же придется от межзвездного корабля вернуться к лягушечьей лапке. А чтобы немного оживить беседу, займемся теперь уже лапкой не мертвой лягушки, а живой. Причем нас будет интересовать даже не вся лапка в целом, а одни только мышцы, покрывающие кости этой лапки, так же как они покрывают скелет любого позвоночного животного — от золотой рыбки в аквариуме до человека.
Прыгает ли лягушка в пруд, спасаясь от преследования, исполняет ли балерина сложнейшее па, пишет ли ученый новый труд с интригующим названием «Машина умнее человека», все время работают мышцы — работают десятки, сотни живых двигателей, непрерывно превращая энергию топлива — пищи — в механическую энергию, нужную, чтобы двигаться, работать, говорить, писать.
Вспомните, как действуют паровая машина, паровая турбина, двигатель внутреннего сгорания, газовая турбина, реактивный двигатель, ракета. Во всех случаях химическая энергия топлива сначала преобразовывается и тепловую и только после этого в механическую.
В мышце преобразование энергии происходит при постоянной температуре, химическая энергия непосредственно преобразуется в механическую энергию. Каждому понятно, что чем короче цепочка преобразований, тем меньше энергии расходуется впустую, тем экономнее оказывается двигатель, осуществляющий преобразование энергии. И действительно, в мышцах тренированного спортсмена преобразуется в полезную работу до 45 процентов химической энергии, заключенной в пище, — другими словами, коэффициент полезного действия (или как его сокращенно называют, кпд) живого двигателя достигает 45 процентов, в то время как кпд лучшего теплового двигателя — современной паровой турбины — не превышает 40 процентов.
Живые двигатели устроены не так, как искусственные двигатели, и действуют совсем по-другому.
«Мясо» животного и есть мышцы, которые составляют примерно половину веса его тела. Выловив из супа кусок мяса, можно увидеть, что оно состоит из множества прилегающих одно к другому волокон толщиной в 10–100 микрон, называемых мышечными волокнами. Они построены из особых мышечных белков. Когда попытались под микроскопом рассмотреть мышечное волокно, то оказалось, что оно, в свою очередь, состоит из тончайших ниточек, толщиной в микрон.
Представляете ли вы, читатель, что такое микрон? Толщина человеческого волоса составляет от 30 до 60 микрон. Нить искусственного волокна тоньше, но и она порядка 20–40 микрон. Шелкопряд прядет нить толщиной 12–15 микрон. Размеры микроскопических организмов — бактерий — составляют в среднем от 1 до 5 микрон.