Читаем Кто угрожает России? Вызовы будущего полностью

К примеру, в ноябре 1998 года на «Мире» проводился эксперимент «Оранжерея-4». Космонавты пытались прорастить пшеницу сорта «Апогей». К 15 января 1999 года началось колошение пшеницы, 27 января – в колосьях появились семена. У всех растений были зерна. 22 февраля за день до спуска на Землю срезали 29 колосьев и уложили их в специальную тару. На орбите оставили 12 зерен, которые были посеяны 9 марта 1999 года и дали всходы. В ходе эксперимента было получено в общей сложности 508 зерен.

Полный успехом завершился и эксперимент «Оранжерея-6», в рамках которого экипаж «Мира» выращивал листовые культуры: мизуну, пекинскую капусту, брокколи рааб и красную гигантскую горчицу. 21 мая 2000 года состоялся посев, уже через неделю все растения взошли, а еще через несколько дней космонавты смогли оценить вкус нежных листочков.

Свои космические огороды были заведены и на Международной космической станции. В период с марта 2003 года по апрель 2005 года в оранжерее «Лада» было проведено пять экспериментов по культивированию генетически маркированных растений карликового гороха. Результаты проведенной работы показали, что космический горох в течение полного цикла выращивания практически не отличается от контрольных образцов на Земле.

Понятно, что эксперименты будут продолжены в дальнейшем. Однако и тех данных, которые удалось накопить ученым, достаточно, чтобы прийти к малоутешительным выводам. Хотя высшие растения могут жить и размножаться в условиях космического полета, они не дают каких-то особенных всходов и урожаев, на которые рассчитывал Циолковский. Исследования также показали, что в третьем поколении снижается продуктивность орбитальных оранжерей – это обусловлено истощением питательных веществ и накоплением продуктов метаболизма растений в корневом модуле оранжереи. Следовательно, модули придется регулярно менять на новые – а как это сделать в условиях продолжительного космического полета? Брать с собой запас? Такой вариант возможен, однако он натыкается на серьезное препятствие: согласно расчетам, космическая оранжерея способна регенерировать до 5 % кислорода, до 3,6 % воды и около 1 % основных элементов питания в общем балансе экспедиции. При этом она очень зависима от условий окружающей среды, нуждается в непрерывном контроле и особом уходе. При любом раскладе получается, что выгоднее захватить провиант с собой в виде консервов, а с оранжереей лучше не связываться. Впрочем, позитивный психологический эффект от присутствия растений на борту межпланетного корабля трудно переоценить – космонавтам очень нравится работать с ней и пользоваться результатами своего труда.

В любом случае необходимы еще многолетние и кропотливые исследования, которые позволят окончательно ответить на вопрос, какие из земных растений имеет смысл брать в длительный космический полет, а какие нет. Пока же ботанические опыты проводят от случая к случаю – нет даже серьезной генетической экспертизы, которая позволила бы выявить изменения, вносимые в генетику тех или иных растений факторами космического полета.

* * *

Еще больше проблем выявили первые опыты с птицами, которых предполагалось взять в полет для пополнения рациона космонавтов.

Прежде всего исследователей интересовало, способны ли птенцы к росту в условиях невесомости. Для экспериментов были выбраны японские перепела. Несмотря на то, что они значительно меньше кур по своей массе (взрослая особь весит всего-то около 100 граммов), их масса, приходящаяся на единицу корма, значительно выше куриной. Яйца же перепелиные маленькие, но очень вкусные, по питательной ценности не уступают куриным и содержат лизоцим – вещество, укрепляющее иммунную систему. Кроме того, перепел не болеет (температура тела птицы около 41 °C, а сальмонелла гибнет при температуре 38 °C). Очень важно и то, что японским перепелам не требуется для развития много времени: птенец появляется на свет на 17 – 21-е сутки после закладки яйца в инкубатор. Перепела начинают нестись гораздо раньше кур, в возрасте 35–40 суток, и некоторые особи выдают по два яйца в день.

Первый опыт с перепелиными яйцами в условиях космического полета был проведен в 1979 году на борту биоспутника «Космос-1129» в установке «Инкубатор-1». Целью его было установить, могут ли в условиях невесомости развиваться эмбрионы птенцов. Исследования показали, что развитие эмбрионов шло вполне успешно, на основании чего был сделан вывод: невесомость не препятствует развитию живых организмов.

Опыт учли при создании новой установки «Инкубатор-2» для экспериментов на станции «Мир». Первым живым существом, родившимся в космосе, стал перепеленок, пробивший скорлупу 22 марта 1990 года в специальном космическом инкубаторе. За ним появился второй, третий. Однако перепелята не смогли адаптироваться к условиям невесомости. Они хаотически летали внутри каюты, не умея зацепиться за решетку. Из-за отсутствия фиксации тела в пространстве они не смогли самостоятельно кормиться и вскоре погибли.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже