Читаем Кто вы? полностью

Подсчет λ прост: скорость распространения колебаний в данной среде надо умножить на время одного периода. По мере увеличения частоты длина волны, естественно, уменьшается.

Для радиоволн λ лежит в интервале от сотен метров до долей сантиметра. Световые волны пробегают за время одного периода всего лишь одну миллионную долю сантиметра. А для гамма-лучей это расстояние нужно еще уменьшить в миллион раз!

Радиоволны настолько вошли в наш быт, что стали почти домашними животными. А ведь было время, когда только один человек на Земле верил в возможности излучения и распространения радиоволн. Этот человек создал общую теорию взаимодействия электрических и магнитных нолей, выраженную им в строгой математической форме в виде уравнений.

Из уравнений следовал невероятный для того времени (1873 г.) вывод — можно создать радиоволны, которые будут распространяться на большие расстояния!

Более того, уравнения позволили предсказать скорость распространения этих существовавших только на бумаге и в воображении ученого волн. Она оказалась весьма близкой к уже известной скорости света. Наконец, эти же уравнения вскрывали тайну световых лучей. Из них следовала электромагнитная природа света.

Кто же этот первооткрыватель радиомира? Это английский ученый Джемс Клерк Максвелл.

Спустя 15 лет существование радиоволн было подтверждено опытами, проведенными выдающимся немецким физиком Генрихом Герцем. Но сам он, как ни странно, не верил в будущее радиоволн. И понадобился гений Александра Степановича Попова, чтобы использовать волны Максвелла для передачи информации. Это случилось еще 8 лет спустя после опытов Герца — в 1895 году.

Полученные столетие назад уравнения, носящие название уравнений Максвелла, еще и сегодня являются стандартным аппаратом для анализа электромагнитных явлений в любых заданных условиях. Лучшими стихами на памятнике Максвеллу были бы… эти уравнения.

Чем же определяется предельная дальность распространения колебаний в среде?

Теоретически всякое колебание, раз возникнув в среде, распространяется в ней беспредельно, точнее, «достигает бесконечно удаленных точек с бесконечно малой амплитудой». Но из опыта мы знаем, что для всякого колебания (звукового, светового, радио) имеется предельное расстояние, за которым обнаружить его не удается.

В чем же дело? Не шутит ли с нами теория?

Ответ на этот вопрос читатель найдет в следующей главе.

Щели в доспехах

Итак,

а) в природе наблюдаются колебательные движения с частотами очень широкого диапазона — от ничтожных долей периода до миллиардов миллиардов периодов в секунду. Свойства этих колебаний различны и определяются их частотой. Принципиальная особенность колебательных движений — способность распространяться в окружающей среде;

б) обитатели Земли («в упорном труде») изучили многие свойства этих колебаний, научились генерировать, излучать и принимать эти колебания в удаленных от источника точках.

Теперь уместно поставить два вопроса. Какие колебания способны уйти навсегда за пределы Земли и стать вестниками нашей цивилизации? Какие колебания могут прийти к нам из космоса и принести весть от обитателей иных миров?

Сразу нужно исключить из рассмотрения все неэлектромагнитные колебания (механические, звуковые, ультразвуковые), которые могут распространяться только в средах типа воздух, вода, металл и быстро в них затухают. Из электромагнитных колебаний также далеко не все могут быть использованы для межзвездной связи.

Наша планета совершает свой путь по холодному космическому пространству в могучих тройных доспехах.

Первая — самая тонкая — броня поднимается над поверхностью на 20 километров и именуется тропосферой. Вторая — в четыре раза толще — это стратосфера. И наконец, самая мощная броня, составляющая сотни километров, — ионосфера.

Только благодаря этим доспехам нам на голову не падают бесчисленные метеориты: они сгорают в атмосфере. Только благодаря этому панцирю на Земле есть люди, животные, деревья, розы… Это он поглощает сильное рентгеновское и ультрафиолетовое излучения, приходящие к нам из космоса, и защищает все живое.

Но в этих доспехах есть две щели. Через одну свободно проникают радиоволны, через другую свет. Эти два «окна» и соединяют нас со вселенной. Через световое окно поступает солнечный свет и свет звезд. Этим окном пользуются астрономы. Их инструменты — глаз, бинокль, телескоп, фотоаппарат и др.

Через радиоокно к нам поступает невидимое глазом излучение небесных тел. Благодаря ему и возникла радиоастрономия. Инструменты здесь — радиотелескопы, радиоприемники, осциллографы и т. д.

Радиоастрономия — молодая ветка на древнем дереве астрономии. Правда, на нем в последнее время появились и совсем молодые побеги — рентгеновский, ультрафиолетовый, инфракрасный, нейтринный.

Эти направления связаны с выносом приборов для наблюдения за пределы трех панцирных оболочек Земли. Поэтому не будем растекаться мыслью по этому древу, а вернемся к нашим щелям.

Перейти на страницу:

Все книги серии Эврика

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука