Как результаты психоаналитических исследований, а теперь снимки мозга стали приниматься к рассмотрению в суде? В США существуют общие стандарты для научных доказательств, допустимых в суде. Разные штаты либо руководствуются так называемым правилом Фрая о всеобщем признании, которое гласит, что “научное доказательство принимается во внимание, когда научные приборы, данные и методики ‘получили всеобщее признание’ компетентного сообщества”18
; либо опираются на правило Доберта-Джойнера-Кумхо[35], которое возлагает на судей обязанность отбирать только обоснованные научные доказательства и показания экспертов; либо используют комбинацию обоих правил. Чтобы определить, на достоверные ли научные данные опираются показания эксперта, судьи применяют несколько критериев, например проверяют, опровержимы ли теория или метод, подвергались ли экспертной оценке и так далее. Однако может ли судья, имеющий опыт юридической работы, но не научной, объективно оценить, обоснованно ли научное доказательство?Изображения мозга, стоит ли их принимать в качестве доказательств в соответствии с научными стандартами или нет, уже попали в залы судебных заседаний, и нам приходится иметь с ними дело. Функциональная визуализация мозга стала основанием для набирающей силы тенденции рассматривать мозг с точки зрения детерминизма, хотя современные снимки, как мы увидим, по своей природе гораздо более статистические. Тем не менее данные, полученные с помощью функциональной визуализации мозга, по-видимому, тоже будут применяться как доказательства на судебных разбирательствах. Однако внимательное изучение этой методики должно было бы поставить под сомнение интерпретации результатов, получаемых с ее помощью, а значит, и всеобщие ожидания.
Мозг универсален? Проблема индивидуальных различий
Подобно отпечаткам пальцев, мозг каждого человека немного отличается от мозга других людей, обладает уникальной “конфигурацией”, и все мы по-разному разрешаем проблемы. Это ни для кого не новость, и исследование индивидуальной изменчивости в психологии имеет богатую историю. Тем не менее, когда появилась первая методика нейровизуализации, изучение вопроса об индивидуальных особенностях временно приостановили. Но мало получить красивый снимок мозга, нужно еще понять, на что ты смотришь, как данная область связана с другими зонами мозга, какова ее функция, как определить местонахождение той или иной структуры при переходе от одного снимка к другому. А как все это делать — было неизвестно. Изображения, полученные с помощью магнитно-резонансной томографии, у разных людей сильно различаются в первую очередь из-за неодинаковых объема и формы мозга, что приводит к неидентичной ориентации плоскостей срезов, а также из-за программы, задаваемой оператором томографа. В 1988 году Жан Талейрак и Пьер Турну опубликовали трехмерный атлас послойных изображений мозга с наложенной на них пропорциональной сеткой координат. Он позволял непосредственно соотносить и исследовать мозг разных людей, несмотря на наличие индивидуальных особенностей. Идея в том, что местоположение компонентов мозга, которые находятся глубоко внутри и не видны с его поверхности, можно установить в привязке к “двум структурам, легко опознаваемым с поверхности — передней и задней комиссурам”. Эти четкие анатомические ориентиры позволяют преобразовать индивидуальные изображения мозга, полученные с помощью магнитно-резонансной или позитронно-эмиссионной томографии, в “стандартное пространство Талейрака”. Далее с помощью атласа можно делать выводы о тождественности тканей в том или ином месте.
У этого метода, безусловно, есть ограничения. Талейрак объяснил, что образцом для создания стандартного пространства послужил мозг умершей шестидесятилетней француженки, который был меньше среднего по размерам, да и вообще “из-за вариабельности размеров мозга, особенно конечного[36]
, данный метод работает