Другой важный предшественник моего Куба известен как куб Мак-Магона, состоящий из кубиков, очень похожих на детские цветные строительные блоки, у которых все грани имеют разные цвета и ни одна не повторяется. Но расположение цветов на кубиках разное, и существует тридцать вариантов куба с шестью разноцветными гранями. Эта головоломка не так широко известна, как другие, но все же представляет собой интересную математическую задачу. Есть тридцать кубов с гранями шести цветов во всевозможных комбинациях. Суть задачи заключается в том, чтобы взять один маленький куб, а затем, используя восемь других, создать из них большой куб 2 x 2 x 2, который имел бы такое же расположение цветов, как у первого куба. При этом каждая большая грань должна быть одного цвета и маленькие кубики также должны соприкасаться внутри гранями одного цвета. Наибольший размер куба, который можно создать, придерживаясь того же правила, – 3 x 3 x 3. С точки зрения комбинаторики существует тридцать возможных способов расположить цвета на шести гранях куба.
Улавливается очевидное сходство с Кубом, но есть и очень важное отличие: все эти кубики разделены. Их элементы не связаны физически. И опять это комбинаторная задача, которая состоит в том, чтобы выяснить, сколько существует способов собрать их вместе. Природа задачи заключается в том, чтобы в определенном смысле распознать образ, силой воображения найти нужные элементы и соединить их между собой.