Общая схема условного рефлекса первого типа может быть записана символически следующим образом. Исходное состояние системы таково, что стимул SA
вызывает реакцию RA (SA->RA). Другой стимул SB реакции RA не вызывает. Если же вслед за стимулом SB следует стимул SA, то реакция RA возникает (SBSA®RA). В этом случае принято говорить, что условный раздражитель SB «подкрепляется» безусловным раздражителем SA. Если теперь такое совместное действие стимулов SB и SA повторяется достаточное число (n) раз, то уже одного стимула SB оказывается достаточно, чтобы вызвать реакцию RA. Коротко это будет выглядеть так:
SA
вызывает RASB
не вызывает RASBSA
вызывает RA………….
…………. n
раз………….
SB
вызывает RA.
Для характеристики условного рефлекса второго типа опишем один из экспериментов Конорского. Собаку оставляли в пустом помещении. Время от времени собака без видимой причины лаяла. Каждые несколько минут раздавался стук метронома, и если собака в этот момент лаяла, то из пищевого контейнера падал кусочек мяса. Вскоре собака стала лаять в экспериментальной обстановке постоянно. Но лай «подкреплялся» мясом только тогда, когда стучал метроном. В результате собака начинала лаять именно тогда, когда стучал метроном. Именно так осуществляется дрессировка животных, когда животное учат в ответ на определенный сигнал выполнять определенное действие.
Если мы теперь сравним условные рефлексы первого и второго типа, то увидим, что за сходством терминологии здесь скрывается существенное различие явлений. В первом случае «подкрепляющим» называют такой стимул, который «безусловно» вызывает у животного вырабатываемую реакцию (SA
->RA). Так, в опытах с пищевыми условными рефлексами мясо (подкрепляющий стимул) «безусловно» вызывает пищевую реакцию – слюноотделение. Во втором же случае вообще нет такого стимула, который «безусловно» вызывает лай. «Подкрепление» же (мясо) играет другую роль – роль вознаграждения. В условных рефлексах второго типа нет аналога ситуации SA->RAВ нашей модели наличие ящиков первого порядка достаточно для моделирования классических условных рефлексов, но не может обеспечить реализации условных рефлексов второго типа. Иначе обстоит дело, если использовать ящики высших порядков. Наличие карточки F
в ящике ЕС моделирует след в памяти того, что событие F произошло после С, которому предшествовало Е. Из вышесказанного ясно, как ящик ЕС может быть использован для того, чтобы осуществить вероятностное прогнозирование предстоящих событий, в частности предсказать вероятность наступления события F.Но ящики второго (и более высокого) порядка могут быть использованы еще и другим образом. Под каждой буквой (в нашем примере F, Е, С
) можно понимать любое событие, воспринимаемое животным. Таким событием может быть и внешнее явление, и собственное действие животного: сгибание лапы, лай и т. п.Пусть F
будет означать появление мяса, Е – стук метронома, С – лай. Послышался стук метронома Е. Собаке же хочется мяса F. Что надо сделать, чтобы с наибольшей вероятностью получить мясо? В памяти-картотеке просматриваются ящики ЕА, ЕВ, ЕС,, где А, В, С… – различные действия собаки. В каждом из этих ящиков подсчитывается вероятность наступления желаемого события (появление мяса). Таким образом, используя ящики второго порядка, можно не только осуществлять вероятностное прогнозирование внешних событий, но и строить планы собственных действий С, приводящих с наибольшей вероятностью в заданных условиях (произошло Е) к желаемому результату («хочу мяса» – Е). Еще лучше эта задача решается с ящиками более высоких порядков. Ящики n-го порядка позволяют строить планы действий, состоящие из n минус 1 шагов, приводящих с наибольшей вероятностью к желаемому результату в заданных условиях. С помощью ящиков n-го порядка можно строить и более короткие планы действий – из n минус к шагов, но зато к первых элементов будут использованы для более точного прогноза.Чем более высокого порядка ящиками располагает модель, тем точнее она осуществляет вероятностное прогнозирование, тем более длинные планы действий можно строить. Но это дается ценой значительно большей громоздкости памяти и «перебора» при выборе из памяти. Число ящиков в модели сильно увеличивается при возрастании их высшего порядка (n
).При том же числе т
возможных событий (т. е. таких событий, которые наступили хоть раз в жизни модели) модель может содержать: ящиков первого порядка – т, ящиков второго порядка – m2, ящиков третьего порядка – m3,, ящиков n порядка – mn.Так что в простой среде пользоваться ящиками высоких порядков нецелесообразно: процедура прогнозирования становится громоздкой и длительной, а выигрыш в точности может быть малым или даже совсем отсутствовать (если, например, среда представляет собой бернуллиеву последовательность, т. е. случайную последовательность, в которой вероятность возникновения того или иного события не зависит от предшествовавшего события).