Античная наука была исторически первой, удовлетворяющей указанным признакам науки, однако в ней отсутствовал важнейшей компонент – экспериментальная деятельность. Поэтому можно признать односторонними как утверждение о возникновении науки только в XVII
веке, так и противоположную мысль о том, что наука уже была в Древней Греции. Более точной представляется позиция, согласно которой впервые в эпоху Античности формируются условия существования науки, наука же в подлинном смысле слова с ее экспериментальными методами сложилась в XVII веке, базируясь на достижениях теоретической мысли как греческой Античности, так и Средневековья. В преодолении теоцентристской (все объясняющей через Бога) средневековой картины мира с элементами возврата к Античности в ее целостном взгляде на Вселенную и человека в ней, но в то же время в пересмотре и этих античных «научных программ», что, в свою очередь, было обусловленно богатством идей и культуры Возрождения, и происходило становление науки в Европе XVI–XVII веков. Теперь мы можем задаться вопросом о том, какое же влияние культура этого времени оказала на возникающую науку.Возрождение характеризовалось стремлением освободиться от абсолютного влияния религии, от концепции креационизма, утвердить человека как творца, как субъекта, особенно ценного своим разумом. Поэтому неудивительно, что в основе понимания природы лежал абсолютный детерминизм, не просто исключающий случайность, но и не требующий трансцендентного вмешательства, т. е. приводящий к деизму (отсутствию необходимости постоянного присутствия Бога, замененного однозначно выведенными законами природы).
В культуре конца XIX века заметно влияние модернизма, стремление уйти от механистичности, строгого детерминизма, усиление роли случайности, даже определенной хаотичности. В какой-то мере это отразилось и на неклассической картине мира. Так же как век спустя экологичность мышления, системный характер природы и общества осознаются не только из открытий или найденных новых фактов, но и как определенные тенденции в культуре, позволяющие стремиться осознать мир как некое подобие живого (целостным, законосообразным, но не механическим). Но к этому мы вернемся позже.
Следующий вопрос вытекает из рассмотренных: как изменялась наука с XVII века до настоящего времени и возможно ли дать некоторую классификацию науки, выделить определенные периоды ее развития? Последние годы характеризуются попытками пересмотра сложившегося образа науки, причем этот пересмотр затрагивает отношения как внутри науки, так и науки и культуры, науки и общества, а также науки и человека.
Исследователи часто приходят к выводу, что для характеристики образа науки удобно воспользоваться примером физической науки. Тогда возникает периодизация, в которой классическая стадия начинается с XVI–XVII веков и продолжается до конца XIX века; неклассическая стадия начинается с начала XX века, и к концу его начинает формироваться так называемая постнеклассическая стадия.
Каждая из стадий имеет аналогии в физической теории, связана со своей парадигмой, картиной мира и даже со своей метафорой. Классическая стадия развития науки сопоставляется с классической физикой от Галилея до Эйнштейна. Ее парадигма – механика, картина мира строится на жестком детерминизме, напрашивается аналогия мироздания с часовым механизмом. Неклассическая наука сопоставляется с появлением теории относительности. С ней также связаны парадигмы дискретности, вероятности, квантования, дополнительности. На рубеже XIX–XX веков после успехов электродинамики, открытия давления света, делимости атома постепенно перед учеными предстал совершенно иной объект исследования: микромир – мир элементарных частиц с законами, отличающимися от известных ранее. Так, свет оказался видом электромагнитного излучения, имеющим одновременно свойства и частицы, и волны (дискретности и непрерывности). Энергия в микромире квантуется, т. е. распространяется только порциями – квантами (дискретно), для света – фотонами. Для элементарной частицы можно получить точные данные либо о энергии, импульсе, либо о положении в пространстве и времени. Этот принцип, открытый Н. Бором,
получил название принципа дополнительности. Он сыграл важную роль для формирования квантовой механики. Открытие этих и множества других свойств микромира и законов квантовой механики наряду с теорией относительности А. Эйнштейна совершенно изменило взгляды на природу и привело к новой стадии науки, к новой картине мира. Теория относительности Эйнштейна установила конечность скорости света, связь пространства, времени и движущейся материи, впервые позволила построить модель эволюционирующей Вселенной.