В некоторых ситуациях пользователю нужна помощь при определении перепада давления в регулирующей арматуре. Типичная ситуация такого рода представляет собой насосную систему, в которой пользователь знает необходимое давление в конце системы и в праве выбрать насос. Процедура, которая часто дает оптимальное падение давления в регулирующей арматуре, включает в себя расчет потерь динамического давления во всех неподвижных элементах системы при расчетном уровне расхода. Для хорошего баланса по экономичности и качества регулирования следует добавить падение давления, равное половине динамических потерь для регулирующей арматуры. После добавления этой суммы к требуемому давлению в конце системы и любым изменениям в напоре, выберите насос, который соответствует требуемому давлению как можно ближе. Так как, вероятно, нужно будет выбрать насос, который не совсем точно соответствует расчетному требуемому давлению, следует пересчитать фактический размер регулирующей арматуры по P, как описано в предыдущем абзаце. Проектирование при расчетном перепаде давления для регулирующей арматуры значительно меньшей, чем половина других динамических потерь, вероятно, приведет к системе, которая будет плохо регулировать. Проектирование при перепаде давления регулирующей арматуры, которое значительно выше, приведет к излишне высокой расходуемой энергии насосом, и может вызвать проблемы с шумом и кавитацией.
Кавитация в регулирующей арматуре
Дросселируемый поток жидкости в регулирующей арматуре приводит либо к парообразованию, либо, что чаще, к кавитации. Необходимо ее избегать, потому что кавитация в регулирующей арматуре почти наверняка приведет к высокому уровню шума, быстрому и серьезному повреждению клапана. Классический подход, объясняющий явление дросселируемого потока, заключается в предположении, что поток увеличивается линейно с квадратным корнем падения давления P, пока P не достигнет дросселируемого перепада давления Pchoked, а затем сразу становится полностью дросселируемым без дальнейшего увеличения расхода (см. пунктирные линии на рисунке 1.22.). Также представлен расход в зависимости от квадратного корня падения давления в соответствии со стандартами размеров регулирующей арматуры ISA / IEC.
Рис. 1.21. Расход жидкости в зависимости от квадратного корня падения давления в регулирующей арматуре
В действительности существует определенное количество округлений на графике в точке Pchoked, как показано на рисунке 1.22. Это округление кривой потока прогнозирует кавитационные повреждения более тонко, чем просто сравнение действительного падения давления с рассчитанным перепадом дросселируемого давления, которое предполагает классическое рассмотрение о внезапном переходе между недросселируемым потоком и дросселируемым потоком. Оказывается, что и шум, и разрушение могут возникнуть еще до того, как падение давления достигнет Pchoked . На протяжении многих лет, то, что здесь называется Pchoked имело множество названий, потому что стандарты регулирующей арматуры ISA / IEC никак его не называло. С выпуском Стандарта-2012 впервые возникло название Pchoked».
Некоторые производители регулирующей арматуры прогнозируют возникновение кавитации путем определения начального повреждения, связанного с падением давления, которое иногда называют PID, как показано в формуле на рисунке 1.21. Эти производители оценивают опыт фактического применения с кавитационными повреждениями и устанавливают то, что они считают значимым значением Kc для своей регулирующей арматуры. Один производитель, например, использует Kс для седельных клапанов, равные 0,7. Есть другие производители, которые, исходя из рекомендованной практики, ISA – RP75.23–1995, используют для обозначения различных уровней кавитации. Эти производители регулирующей арматуры публикуют значения, либо mr (рекомендуемое производителем значение сигма) или повреждения (damage).
Сигма определяется как «(P1 – Pv) / P» mr и Kс являются обратными величинами и, таким образом, передают ту же информацию. Высокие значения Kс перемещают точку начального повреждения ближе к Pchoked, где более низкие значения mr делают то же самое.
Хороший метод для прогнозирования кавитационных повреждений основан на том факте, что тот же элемент, который наносит ущерб, также вызывает шум, а именно схлопывание пузырьков пара. Идея корреляции шума с кавитационным повреждением получила свое начало в 1985. Ганс Бауманн опубликовал статью в журнале Chemical Engineering (Химической инженерии – www.chemengonline.com), где на основании некоторых тестов предельных повреждений, он установил максимальный уровень звукового давления, SPL, 85 дБА в качестве верхнего предела, чтобы избежать недопустимые уровни кавитационных повреждений в дисковых затворах.