Читаем Курс истории древней философии полностью

В теории чисел пифагорейцы от начала устанавливали различие между четными и нечетными числами. «Чет» и «нечет» – это основные элементы числа, основные виды его, причем единица, в своем качестве первого общего начала всех чисел, иногда определялась как «четно-нечетное» начало (Аг. М., I, 5, 986 а 15, и Philol., fr. 5). Четные числа суть кратные двум: они допускают элементарную форму деления – раздвоение; нечетные, наоборот, не допускают такого раздвоения, противятся ему. Они имеют в себе единицу между равными числами (напр., 7=3+1+3). Поэтому «чет» знаменует раздвоение, множество, разлад, а «нечет», напротив того, внутреннее единство, цельность, согласие.

Но мироздание не только управляется числами, оно слагается из чисел, откуда невольно является вопрос: каким образом числа получают телесность и протяженность и, прежде всего, каким образом арифметическое переходит в геометрическое? Некоторым ответом служит сама теория чисел пифагорейцев, которая вся проникнута мыслью об аналогии арифметических величин и отношений с пространственными или геометрическими. Мы знаем числа квадратные и кубические; пифагорейцы говорят также о числах линейных, плоскостных, многоугольных, телесных, о числах продолговато-четырехугольных и треугольных, о числах-гномонах.

с) Геометрическое объяснение

Наряду с арифметическим мирообъяснением мы находим и геометрическое мирообъяснение, которое связывается с первым, – во всяком случае у пифагорейцев Аристотеля, а может быть, и несравненно ранее.

Мы видели, что предшественник Пифагора Анаксимандр признавал началом всего беспредельное: мир сложился из нескольких основных противоположностей, заключавшихся в беспредельном пространстве и снова разрешающихся в него в процессе вечного движения. По учению пифагорейцев, из одного беспредельного нельзя объяснить определенное устройство, определенные формы вещей, существующих раздельно. Учение Анаксимандра исходило из представления неограниченного, беспредельного пространства как основного начала всего вещественного мира, всего существующего. Но из одного пространства нельзя объяснить ни физических, ни даже геометрических тел. Тело ограничивается плоскостями, плоскости линиями, линии точками, образующими предел инии. И таким образом все в мире составлено из «пределов и беспредельностей», т. е. из границ и того, что само по себе не ограничено, но ограничивается ими. «Природа, находящаяся в космосе (мировом порядке), – говорит Филолай (fr. l), – гармонически слажена из беспредельного и определяющего; так устроен весь космос и все, что в нем». Этими словами Филолай начинает свое сочинение.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже