где N - число молекул в единице объема, с - скорость молекул, h - константа, определяемая температурой. «Но встречающиеся в природе молекулы, — писал Больцман, — отнюдь не являются простыми материальными точками. Мы, очевидно, будем ближе к действительности, если будем рассматривать их как систему нескольких материальных точек (так называемых атомов), которые удерживаются вместе определенными силами. Тогда состояние молекулы в определенный момент времени будет определяться не одной переменной, а многими». Максвелл в 1875 г. в статье «О динамическом доказательстве молекулярного строения тел» присоединяется к результатам Больцмана. Он писал: «Опубликованные мной в 1860 г. результаты подверглись затем более строгому исследованию доктора Людвига Больцмана, применившего также свой метод к изучению движения сложных молекул». Указав на трудности теории теплоемкости, Максвелл считает, что теорема Больцмана дает возможность объяснить закон Дальтона, выравнивание температур в вертикальном столбе газа и «открывает, по-видимому, путь в чисто химическую область исследования».
Критические замечания Максвелла о кинетической теории теплоемкости также примыкают к рассуждениям Больцмана. Больцман показал, что средняя кинетическая энергия всех атомов, которые считаются точками, одна и та же и равна 3/2h. Отсюда для двухатомных молекул отношение теплоемкостей Ср /Сv должно равняться 1,33, а опыт дает для воздуха 1,41. Больцман считает это расхождение обусловленным взаимодействием молекул с эфиром. Максвеллу это объяснение кажется сомнительным.
В 1876 г. Больцман уточнил свою теорию теплоемкости. В статье «О природе газовых молекул» он указал на про тиворечие своей теории с опытом и сослался на обобщение его теоремы, сделанное Максвеллом и Уатсоном. Максвелл и Уатсон понимали молекулу как систему, положение которой определяется т переменными величинами, не зависящими от движения молекул. Это число т называется числом степеней свободы. Для одноатомной молекулы число степеней свободы равно 3 и отношение теплоёмкостей равно 1и2/3. Для двухатомных молекул число степеней свободы равно пяти: «три координаты центра тяжести и две переменных, определяющих направление центральной линии молекулы». Поэтому для них оно будет λ`/λ=1,4. Если молекулу представлять как твердое тело с шестью степенями свободы, то λ`/λ =1,33.
Теорема Больцмана о равномерном распределении кинетической энергии по степеням свободы молекулы, лежащая в основе классической теории теплоемкости, является важным результатом статистики Больцмана. Однако важнейшим результатом многолетних исследований Больцмана по кинетической теории газов было открытие им связи между энтропией и вероятностью. Упорные поиски механического обоснования второго начала термодинамики увенчались успехом. Но это обоснование потребовало введения понятия вероятности и было достигнуто на путях развития статистической механики.
Формулировка, развитие и защита «теоремы— Н», которая выражает связь между энтропией и вероятностью данного состояния системы, составили дело жизни Больцмана. Оно началось с его юношеской работы 1866 г. и продолжалось до последней статьи «Кинетическая теория материи», написанной is сотрудничестве с Ноблем для «Математической энциклопедии». Статья была закончена в октябре 1905 г., и выпуск «Энциклопедии», в котором она была опубликована, был снабжен кратким сообщением «Памяти Людвига Больцмана», начинавшимся словами: «В этом выпуске на первом месте помещена статья Больцмана о кинетической теории материи и вместе с тем это последнее создание его рук».
Основная работа, в которой Больцман впервые формулирует свою теорему, — это работа 1872 г. «Дальнейшее исследование теплового равновесия газовых молекул». Здесь Больцман со всей четкостью утверждает, что «проблемы механической теории теплоты являются проблемами статистическими». Больцман выводит основное уравнение для функции распределения f и показывает, что существует такая функция Е, зависящая от логарифма f, которая всегда убывает и лишь при достижении статистического равновесия остается постоянной. В этом состоянии равновесия функция распределения совпадает с максвелло-больцмановским распределением.