Поскольку значительная часть областей Марса нагревается выше точки замерзания по меньшей мере в определенные времена года, большие количества воды, вмороженные в реголит как вечная мерзлота, начнут таять и в конечном итоге вытекут в сухие русла рек. Водяной пар тоже эффективно действует как парниковый газ, а поскольку давление насыщенных паров воды на Марсе при таких условиях значительно вырастет, возвращение жидкой воды дополнит лавину самоускоряющихся эффектов, способствующих быстрому потеплению на планете. Сезонная доступность жидкой воды – также ключевой фактор, важный для создания природных экосистем на поверхности Марса.
Таблица 9.1. Скорость поступления в атмосферу углекислого газа из марсианского реголита
Как может протекать процесс дегазации реголита, мы знаем лишь приблизительно, а общий объем имеющихся запасов диоксида углерода не будет известен наверняка, до тех пор пока астронавты не полетят на Марс, чтобы провести детальное исследование. Так что приведенные результаты следует рассматривать как приблизительные и неточные. Тем не менее понятно, что положительная обратная связь, генерируемая марсианской парниковой системой с диоксидом углерода, значительно снижает количество инженерных усилий, которые потребуются для преобразования Красной планеты. В самом деле, поскольку количество парникового газа, необходимое для нагрева планеты, приблизительно пропорционально квадрату требуемого изменения температуры, создание на Марсе нарастающего парникового эффекта при искусственном повышении температуры на 10 °К потребует всего лишь около 4 % инженерных усилий в подходе грубой силы, которые будут необходимы для увеличения температуры на 50 °К, чтобы марсианские тропики находились при температуре выше точки замерзания воды. Теперь рассмотрим следующий вопрос: как повысить глобальную температуру Марса на 10 °К?
Методы достижения глобального потепления на Марсе
Наиболее перспективными, по всей видимости, будут три варианта: использование орбитальных зеркал для изменения теплового баланса южной полярной шапки (что вызовет испарение диоксида углерода из полярных запасов); массовое производство искусственных галогенуглеводородов на промышленных объектах на поверхности Марса; создание распространенных бактериальных экосистем, способных нагреть планету путем выделения больших количеств сильных естественных парниковых газов, таких как аммиак и метан. Мы рассмотрим каждый из способов по очереди. Однако может статься, что взаимовыгодное сочетание нескольких таких методов может дать лучшие результаты, чем любой из них, использованный по отдельности [47].
Орбитальные зеркала
Хотя производство космического зеркала, способного нагреть всю поверхность Марса до земных температур, теоретически возможно, по инженерной сложности эта задача выходит далеко за пределы технологического горизонта этой книги. Гораздо более практичная идея состоит в постройке зеркала, способного прогреть ограниченную область Марса на несколько градусов. Как показывают данные на рис. 9.1, нагрев южного полюса на 4 °К должен вызвать испарение резервуара с диоксидом углерода в полярной шапке. На основании общего количества солнечной энергии, необходимого для повышения температуры в данной области на определенное количество градусов выше полярного значения в 150 °К, мы приходим к выводу, что космическое зеркало радиусом 125 километров может отражать достаточно солнечного света, чтобы поднять температуру во всей области к югу от 70° южной широты на 5 °К. Этого более чем достаточно. Если солнечный парус будет сделан из материала вроде покрытого алюминием майлара с плотностью 4 тонны на квадратный километр (и толщиной около 4 мкм), его масса составит 200 000 тонн. Множество кораблей близкой массы в настоящее время плавают по океанам Земли. Таким образом, хотя для запуска с Земли парус слишком велик, его можно будет построить в космосе из вещества с астероидов или спутников Марса – когда у нас появятся необходимые технологии. Общее количество энергии, необходимое, чтобы обработать материал для такого отражателя, составит около 120 МВт. лет. Для этого нам потребуется набор 5 МВт ядерных реакторов, которые могут быть использованы в пилотируемом ядерном электрическом реактивном (ЯЭР) космическом аппарате. Интересно, что при размещении вблизи Марса такое устройство не должно обращаться вокруг планеты. Давление солнечного света сбалансирует притяжение планеты, позволяя зеркалу парить как «статит»,[31] а вырабатываемая энергия постоянно будет направляться на южную полярную область [48]. Рабочая высота для паруса предложенной плотности составит 214 000 километров. Идея статита-отражателя и размер зеркала, необходимый для того, чтобы спровоцировать рост полярной температуры, приведены на рис. 9.8 и 9.9.