Читаем Курс на Марс. Самый реалистичный проект полета к Красной планете полностью

Поскольку значительная часть областей Марса нагревается выше точки замерзания по меньшей мере в определенные времена года, большие количества воды, вмороженные в реголит как вечная мерзлота, начнут таять и в конечном итоге вытекут в сухие русла рек. Водяной пар тоже эффективно действует как парниковый газ, а поскольку давление насыщенных паров воды на Марсе при таких условиях значительно вырастет, возвращение жидкой воды дополнит лавину самоускоряющихся эффектов, способствующих быстрому потеплению на планете. Сезонная доступность жидкой воды – также ключевой фактор, важный для создания природных экосистем на поверхности Марса.

Таблица 9.1. Скорость поступления в атмосферу углекислого газа из марсианского реголита

Как может протекать процесс дегазации реголита, мы знаем лишь приблизительно, а общий объем имеющихся запасов диоксида углерода не будет известен наверняка, до тех пор пока астронавты не полетят на Марс, чтобы провести детальное исследование. Так что приведенные результаты следует рассматривать как приблизительные и неточные. Тем не менее понятно, что положительная обратная связь, генерируемая марсианской парниковой системой с диоксидом углерода, значительно снижает количество инженерных усилий, которые потребуются для преобразования Красной планеты. В самом деле, поскольку количество парникового газа, необходимое для нагрева планеты, приблизительно пропорционально квадрату требуемого изменения температуры, создание на Марсе нарастающего парникового эффекта при искусственном повышении температуры на 10 °К потребует всего лишь около 4 % инженерных усилий в подходе грубой силы, которые будут необходимы для увеличения температуры на 50 °К, чтобы марсианские тропики находились при температуре выше точки замерзания воды. Теперь рассмотрим следующий вопрос: как повысить глобальную температуру Марса на 10 °К?

<p>Методы достижения глобального потепления на Марсе</p>

Наиболее перспективными, по всей видимости, будут три варианта: использование орбитальных зеркал для изменения теплового баланса южной полярной шапки (что вызовет испарение диоксида углерода из полярных запасов); массовое производство искусственных галогенуглеводородов на промышленных объектах на поверхности Марса; создание распространенных бактериальных экосистем, способных нагреть планету путем выделения больших количеств сильных естественных парниковых газов, таких как аммиак и метан. Мы рассмотрим каждый из способов по очереди. Однако может статься, что взаимовыгодное сочетание нескольких таких методов может дать лучшие результаты, чем любой из них, использованный по отдельности [47].

<p>Орбитальные зеркала</p>

Хотя производство космического зеркала, способного нагреть всю поверхность Марса до земных температур, теоретически возможно, по инженерной сложности эта задача выходит далеко за пределы технологического горизонта этой книги. Гораздо более практичная идея состоит в постройке зеркала, способного прогреть ограниченную область Марса на несколько градусов. Как показывают данные на рис. 9.1, нагрев южного полюса на 4 °К должен вызвать испарение резервуара с диоксидом углерода в полярной шапке. На основании общего количества солнечной энергии, необходимого для повышения температуры в данной области на определенное количество градусов выше полярного значения в 150 °К, мы приходим к выводу, что космическое зеркало радиусом 125 километров может отражать достаточно солнечного света, чтобы поднять температуру во всей области к югу от 70° южной широты на 5 °К. Этого более чем достаточно. Если солнечный парус будет сделан из материала вроде покрытого алюминием майлара с плотностью 4 тонны на квадратный километр (и толщиной около 4 мкм), его масса составит 200 000 тонн. Множество кораблей близкой массы в настоящее время плавают по океанам Земли. Таким образом, хотя для запуска с Земли парус слишком велик, его можно будет построить в космосе из вещества с астероидов или спутников Марса – когда у нас появятся необходимые технологии. Общее количество энергии, необходимое, чтобы обработать материал для такого отражателя, составит около 120 МВт. лет. Для этого нам потребуется набор 5 МВт ядерных реакторов, которые могут быть использованы в пилотируемом ядерном электрическом реактивном (ЯЭР) космическом аппарате. Интересно, что при размещении вблизи Марса такое устройство не должно обращаться вокруг планеты. Давление солнечного света сбалансирует притяжение планеты, позволяя зеркалу парить как «статит»,[31] а вырабатываемая энергия постоянно будет направляться на южную полярную область [48]. Рабочая высота для паруса предложенной плотности составит 214 000 километров. Идея статита-отражателя и размер зеркала, необходимый для того, чтобы спровоцировать рост полярной температуры, приведены на рис. 9.8 и 9.9.

Перейти на страницу:

Все книги серии Civiliзация

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука