Лучше всего, если ни на одном этапе миссии не требуется сборка на орбите или любого рода рандеву на ней. Единственное необходимое рандеву состоится на поверхности Марса, и оно легко выполнимо. Во время программы «Аполлон» мы высадили экипаж в пределах 200 метров от корабля «Сервейор», который прибыл на Луну несколькими годами ранее, а имеющаяся в нашем распоряжении современная бортовая техника намного точнее. Если во время орбитального рандеву промахнуться на 10 метров, стыковки не произойдет. А при встрече на поверхности можно высадиться в 10 километрах от цели, а затем просто дойти или доехать до нужного места. Кроме того, в качестве части полезной нагрузки жилого модуля мы предусмотрели герметизированный ровер, который может проехать до 1000 километров; нужно
Хотя отправка экипажа на Марс отдельно от ВЗА кажется отчаянной мыслью, на самом деле она будет гораздо безопаснее, чем высадка экипажа вместе с транспортным средством, которое отправит людей обратно на орбиту Марса. Причина проста: если ВЗА высадится первым, астронавты еще до своего старта будут знать, что их ждет полностью работоспособная система для взлета с Марса и возврата на Землю, которая уже выдержала испытание посадкой на Марс. Для сравнения, если экипаж высаживается с системой возвращения на Землю, можно только догадываться, в какой состоянии взлетный модуль будет после того, как они переживут удар о поверхность Марса. Кроме того, согласно нашему плану экипаж отправится на Марс одновременно с еще одним ВЗА, который приземлится в пределах досягаемости герметизированного ровера. Этот второй ВЗА начнет производить топливо для второго пилотируемого полета на Марс, но в случае возникновения чрезвычайной ситуации он может служить резервным жилым модулем для экипажа первой миссии.
К тому же два ВЗА на поверхности Марса и собственный жилой модуль первого экипажа дают нам в общей сложности три жилых объекта, которые могут обеспечить астронавтам комфортное существование. Что касается безопасности марсианских миссий, это лучшее, что можно придумать.
Чем дольше мы продумывали новую архитектуру миссии, тем лучше она становилась. Мы продолжали прорабатывать необходимые подсистемы и конструкции оборудования. Я сосредоточился на синтезе марсианского ракетного топлива. Основным направлением работ в этой области в 1990 году было исследование нового способа расщепления диоксида углерода (СО) на угарный газ (СО) и кислород (O2), которые затем можно сжечь вместе как ракетное топливо. Единственный ингредиент для этого процесса – CO2 – на Марсе так же доступен, как воздух на Земле.
Однако существовало и множество недостатков. Процесс был изучен недостаточно. Чтобы сделать реактор, способный обеспечить энергией пилотируемую марсианскую миссию, потребовались бы десятки тысяч маленьких хрупких керамических трубок с высокотемпературными (около 1000 °C) заслонками на концах. Кроме того, двухкомпонентное ракетное топливо из угарного газа и кислорода, производимое таким способом, имело бы низкое качество и удельный импульс лишь около 270 секунд. (Удельный импульс – это время, за которое производится фунт, то есть около 450 граммов, ракетного топлива, чтобы создать тягу в 1 фунт.[18] Чем выше это число, тем лучше. Удельный импульс двигателей немецких ракет «Фау-2», использовавшихся во время Второй мировой войны, составлял около 230 секунд, а современные двигатели «Пратт энд Уитни RL-10», работающие на смеси водорода и кислорода, имеют удельный импульс в 450 секунд. Ядерный ракетный двигатель на водороде может иметь удельный импульс в 900 секунд.) Не самые удачные показатели смеси угарного газа и кислорода привели бы к тому, что для осуществления полета с Марса на Землю на Красную планету пришлось бы везти очень большие и тяжелые топливные баки. Кроме того, температура пламени при горении этой смеси очень высока, и до сих пор не существует двигателя, который мог бы работать при таких условиях. Разработка такого двигателя обойдется недешево и будет грозить отставанием от графика полетов миссии.