Читаем Курс общей астрономии полностью

Таким образом, по одному из уравнений (6.9) можно получить широту места j , измерив только зенитное расстояние светила, а из уравнений (6.10) можно найти поправку часов и, отметив только момент прохождения светила через меридиан. в) Определение j и и из наблюдений светил на равных высотах (равных зенитных расстояниях). Если для двух светил с прямыми восхождениями a 1 и a 2 и склонениями d 1 и d 2 отметить моменты Т1’ и T2’ их прохождения через общий альмукантарат, т.е. когда они находятся на одинаковом расстоянии z, то на основании (6.7) и (6.8) получим равенство

sin j sin d 1 + cos j cos d 1 cos (Т1’ + и - a 1) =

= sin j sin d 2 + cos j cos d 2 cos (Т2’ + и - a 2),

(6.11)

в котором неизвестными являются географическая широта места j и поправка часов и. Равенство (6.11) находит большое применение в различных способах как раздельного, так и совместного определения j и u. Существенным во всех этих способах является то, что отпадает необходимость измерения зенитных расстояний светил и все наблюдения сводятся к отметке моментов времени по часам при прохождении светил через какой-нибудь альмукантарат.

87. Совместное определение географических координат j и l

Точка на поверхности Земли, для которой какое-либо светило в данный момент находится в зените, называется географическим местом этого светила. Широта j и долгота l географического места светила могут быть определены, если известны координаты светила a и d и звездное время в Гринвиче s0 в момент прохождения светила через зенит. Действительно, когда светило находится в зените, его z = 0, следовательно, широта географического места светила j = d . Но так как при этом светило наводится и в верхней кульминации, то его часовой угол t = 0, а местное звездное время на меридиане географического места светила s = a . Следовательно, долгота географического места светила l = a - s0 . Если наблюдатель находится на земной поверхности в точке О, не совпадающей с

географическим местом В светила М (рис. 64), то он видит светило в момент s0 на зенитном расстоянии z. (Лучи, идущие от светила ко всем точкам на Земле, можно считать параллельными.) Иными словами, наблюдатель находится от географического места светила на угловом расстоянии, равном зенитному расстоянию светила. Если считать Землю шаром, а отвесные линии совпадающими с радиусами Земли, то точки на поверхности Земли, для которых данное светило находится на зенитном расстоянии z, будут расположены на малом круге OO', сферический радиус которого ВО равен зенитному расстоянию z светила, а центр находится в точке В. Такой круг называется кругом равных высот или позиционным кругом.

Пусть теперь наблюдатель измерил в моменты s01 и s02 по гринвичскому времени зенитные расстояния z1 и z2 двух светил М1 и М2 , координаты которых a 1 , d 1 и a 2 , d 2. Следовательно, наблюдатель находится где-то на позиционном круге, описанном сферическим радиусом z1 из географического места В1 (светила М1 ), с координатами j 1 = d 1 и l 1 = a 1 - s01 (рис. 65). Одновременно наблюдатель находится и на другом позиционном круге сферического радиуса z2 с центром в точке В2 , имеющей координаты j 2 = d 2 и l 2 = a 2 - s02 . Это означает, что наблюдатель находится в одной из двух точек пересечения обоих позиционных кругов, в какой именно из них - решить нетрудно, так как радиусы позиционных кругов на Земле очень велики и точки их пересечения обычно удалены друг от друга на большое расстояние. Зная приблизительно район местонахождения наблюдателя, всегда можно выбрать ту точку, которая соответствует действительности. Таким образом, если на земном глобусе начертить эти два позиционных круга и затем определить координаты j и l одной из точек их пересечения, соответствующей положению наблюдателя, то эти j и l и будут искомыми координатами последнего. Этот способ определения географических координат места наблюдения (здесь кратко описана только его идея) находит широкое применение в мореплавании и воздухоплавании. Высоты двух светил с разностью азимутов около 90° измеряются обычно секстантом. Звездное гринвичское время наблюдения отмечается по авиационным часам или морскому хронометру, поправки которого относительно гринвичского меридиана определяются из приема радиосигналов времени (см. 84). При обработке наблюдений применяется не глобус, а географические карты соответствующей проекции. На картах вычерчиваются не полные круги, а только малые части их, и не в виде кривых линий, а в виде прямых, которые по имени американского капитана Сомнера называются сомнеровыми линиями. Пересечение сомнеровых линий указывают на карте место корабля или самолета во время наблюдений.

88. Определение азимута земного предмета

Определение азимута направления на земной премет П состоит из определения астрономического азимута А какого-либо светила M и из измерения горизонтального угла DA между вертикальными кругами светила и земного предмета (рис. 66). Тогда азимут земного предмета AП получим из уравнения

AП = A - DA.(6.12)

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука