Тепловая энергия тела складывается из кинетической энергии всех его молекул. Из-за частых столкновений, скорости, а вместе с ними и кинетическая энергия тепловых движений отдельных молекул постоянно меняются. Однако можно говорить о величине тепловой энергии, которая в каждый данный момент в среднем приходится на одну частицу. Величина, характеризующая тепловое состояние тела и пропорциональная средней кинетической энергии, приходящейся на одну частицу, называется температурой. Если температуру измерять в Кельвинах, а энергию в системе СГС (эрг), то средняя энергия, приходящаяся на одну молекулу газа, составляет
(7.11)
Здесь k = 1,38 10-16 эрг/К - постоянная Больцмана. Она представляет собой универсальную газовую постоянную R, но рассчитанную не на 1 моль, а на одну молекулу, т.е.
(7.12)
Величина k имеет очень важный физический смысл. Мы не можем сказать, сколько молекул газа в данный момент обладает каким-либо определенным значением энергии, потому что это зависит от их случайных столкновений. Однако мы можем сказать, какова вероятность того, что их энергия близка к такому-то значению. Оказывается, что k - это рассчитанная на 1°К наиболее вероятная энергия одной молекулы. Следовательно, при температуре Т большинство молекул газа должно иметь энергию близкую к величине kT. Если эта энергия равна 1 эв, то температура газа составляет
(7.13)
Энергию, отличающуюся от kT в ту или другую сторону больше чем в 2 раза, имеет меньше половины числа молекул, находящихся в некотором объеме газа. Вообще число частиц, имеющих энергию в пределах от e до e + De , быстро убывает по мере увеличения абсолютной величины разности | kT - e | . То же самое имеет место, если рассматривать вместо энергии частиц их скорости. Однако в этом случае следует учитывать, что движения частиц различаются также направлением. Рассмотрим молекулу, обладающую наиболее вероятным значением кинетической энергии kT. Она должна двигаться с наиболее вероятной скоростью, равной по абсолютной величине
(7.14)
Предположим, что все молекулы в среднем движутся со скоростями, равными по величине v* . Тогда, поскольку их движения хаотичны, векторы скоростей отдельных молекул должны иметь всевозможные направления (рис. 87, а). В частности, по отношению к наблюдателю, который смотрит на газ со стороны, одна половина общего числа молекул должна в данный момент приближаться к нему, а другая - удаляться от него. Значительная доля молекул должна двигаться в плоскостях, близких к плоскости, перпендикулярной к лучу зрения. Эти молекулы почти не имеют составляющей скорости вдоль луча зрения, и их количество значительно больше числа молекул, движущихся вдоль луча зрения (рис. 87, 6). Если теперь учесть, что скорости молекул неодинаковы не только по направлениям, но и по величине, то оказывается, что число частиц, у которых составляющая скорости вдоль луча зрения заключена в пределах от vг до vr + dvr , пропорционально экспоненте так что
(7.15)
где е = 2,718... - основание натуральных логарифмов, а п - общее число молекул в 1 см2. Это - закон распределения Максвелла. Для приближенного решения многих астрономических задач можно исходить из предположения, что все частицы имеют одинаковые энергии, равные kT, и в среднем движутся с одинаковыми по величине наиболее вероятными скоростями v* , определяемыми соотношением (7.14). Они очень близки к среднеквадратичной скорости
(7.16)