Читаем Курс общей астрономии полностью

Из многолетних наблюдений установлено, что в тропическом году содержится 365,2422 средних солнечных суток. Нетрудно показать, что звездных суток в тропическом году на единицу больше, т.е. 366,2422. Действительно, предположим, что в момент весеннего равноденствия некоторого года среднее экваториальное солнце и точка весеннего равноденствия находятся в верхней кульминации. Спустя одни звездные сутки точка весеннего равноденствия снова придет на небесный меридиан, а среднее экваториальное солнце не дойдет до него, так как за звездные сутки оно сместится по небесному экватору к востоку на дугу примерно в 1°. Оно пройдет небесный меридиан после поворота небесной сферы на этот угол, на что потребуется около 4m времени, а точнее Зm56s. Следовательно, средние сутки продолжительнее звездных суток на Зm56s. Отходя каждые звездные сутки к востоку на дугу в 3m56s (или ~1°), среднее экваториальное солнце на протяжении тропического года обойдет весь небесный экватор (подобно одному видимому обороту Солнца по эклиптике) и в момент следующего весеннего равноденствия снова придет в точку весеннего равноденствия. Но в этот момент часовой угол среднего солнца и точки весеннего равноденствия будут отличаться от нуля, так как тропический год не содержит целого числа ни звездных, ни средних суток. Нетрудно видеть, что, какова бы ни была продолжительность тропического года, число суточных оборотов Солнца за этот промежуток времени будет на единицу меньше, чем число суточных оборотов точки весеннего равноденствия. Иными словами, 365,2422 средн. солн. суток = 366,2422 звездн. суток, откуда и Коэффициент

(1.22)

служит для перевода промежутков среднего солнечного времени в промежутки звездного времени, а коэффициент

(1.23)

- для перевода промежутков звездного времени в промежутки среднего солнечного времени. Таким образом, если промежуток времени в средних солнечных единицах есть DTm, а в звездных единицах Ds, то

(1.24)

Oтсюда, в частности, следует, что

24h средн. солн. вр.=24h03m56s,555звездн. вр.

1h" " "= 1 00 09 ,856 " "

1m" " "= 01 00 ,164 " "

1s" " "= 01 ,003 " "

24hзвездн. времени=23h 56m 04s,091средн. солн. вр.

1h" " = 59 50 ,170 " " "

1m" " = 59 ,836 " " "

1s" " = 0 ,997 " " "

Для облегчения вычислений на основании соотношений (1.24) составляются подробные таблицы, по которым любой промежуток времени, выраженный в одних единицах, легко можно выразить в других единицах. Для приближенных расчетов можно считать, что звездные сутки короче средних (или, наоборот, средние длиннее звездных) приблизительно на 4m, а один звездный час короче среднего (или средний длиннее звездного) - на 10s. Например, 5h среднего времени " 5h00m50s звездного времени, а 19h звездного времени "18h56m50s среднего времени. Пусть звездное время в некоторый момент на данном меридиане равно s, а звездное время в ближайшую предшествующую среднюю полночь на этом же меридиане было S. Значит, после полуночи прошло (s - S) часов, минут и секунд звездного времени. Этот промежуток, если его выразить в единицах среднего солнечного времени, равен (s - S) К ' часам, минутам и секундам среднего времени. А так как в среднюю полночь среднее солнечное время равно 0h, то, следовательно, в момент s по звездному времени среднее солнечное время будет Тт = (s - S) К'. Наоборот, пусть среднее время в некоторый момент на данном меридиане равно Тт. Это значит, что после средней полуночи прошло Тт часов, минут и секунд среднего времени. Этот промежуток времени равен ТmК звездных часов, минут и секунд, которые прошли от средней полуночи. И если в среднюю цолночь определенной даты на данном меридиане звездное время было S, то в момент Тт звездное время будет s = S + Тm К. Таким образом, в обоих случаях нужно знать звездное время S в среднюю полночь на данном меридиане. В астрономических ежегодниках дается звездное время S0 для каждой средней полуночи на меридиане Гринвича. Зная S0, легко вычислить S на любом другом меридиане, если известна его долгота от Гринвича l , выраженная в часах и долях часа. Действительно, так как средние сутки длиннее звездных на З m б s,ббб, то S0, так же как и S, ежесуточно увеличивается на З m 56 s, 555. Следовательно, на меридиане с долготой l к востоку от Гринвича звездное время в среднюю полночь будет меньше на величину так как средняя полночь на этом меридиане наступит раньше гринвичской полуночи на l h. Отсюда

(1.25)

(Долгота l отсчитывается положительной к востоку от Гринвича.) Для приближенных расчетов, с точностью до 5 минут, звездное время S в среднюю полночь на любом меридиане можно вычислить по следующей таблице:

ДатаsДатаsДатаs

Сентябрь 220 hЯнварь218 hМай2316 h

Октябрь 222Февраль2110Июнь2218

Ноябрь224Март2312Июль2320

Декабрь226Апрель2214Август2222

При этом нужно иметь в виду, что за каждые сутки звездное время уходит вперед относительно среднего времени приблизительно на 4m.

24. Системы счета времени

Перейти на страницу:

Похожие книги

Как работает Вселенная: Введение в современную космологию
Как работает Вселенная: Введение в современную космологию

Эта книга посвящена космологии – науке, недавно отпраздновавшей свое столетие. Она объясняет, почему мы уверены, что у Вселенной есть начало, где и когда произошел Большой взрыв, что означает разбегание галактик, как образовалось все, что нас окружает, от атомов до галактик, каково будущее Вселенной, существуют ли миры с другими физическими законами, что такое черные дыры и многое другое. Подробно рассказывается про то, что нам известно и что неизвестно про две таинственные сущности, которые вместе составляют более 95 % содержимого Вселенной – темную материю и темную энергию. Кроме того, показаны физические основы общей теории относительности и предсказанные ею эффекты.Книга ориентирована на широкий круг читателей, но некоторые ее разделы, в которых излагаются элементы нерелятивисткой космологии, требуют знания математики на уровне начальных курсов университета. Эту часть можно рассматривать как своеобразный учебник, в котором основные космологические решения получены без использования математического аппарата общей теории относительности.

Сергей Л. Парновский

Астрономия и Космос / Прочая научная литература / Образование и наука
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия
Будущее человечества. Колонизация Марса, путешествия к звездам и обретение бессмертия

Известный физик-теоретик, доктор философии и популяризатор науки дает собственный прогноз о нашем будущем. Автор этой книги уверен: совсем скоро людям придется покинуть родную планету и отправиться в космос. Потому что грядет глобальный кризис, несущий угрозу всему живому на Земле…По мнению Митио Каку, людям предстоит стать «двухпланетным видом», как когда-то метко выразился астрофизик Карл Саган. В этой книге ученый рассматривает проблемы, ждущие нас во время освоения космоса, а также возможные пути их решения.Вы узнаете, как планируется колонизировать Марс, что уже сделано для покорения этой планеты, прочтете о новейших достижениях в сфере строительства звездолетов. Ознакомитесь с прогнозом ученого о том, могут ли люди обрести бессмертие. Откроете, как в научном мире относятся к возможности существования внеземных цивилизаций. И вместе с автором поразмышляете над тем, что произойдет, когда человечество сможет выйти за пределы Вселенной…

Митио Каку , Мичио Каку

Астрономия и Космос / Педагогика / Образование и наука