Радиоизлучение точечного источника при наблюдениях с одиночной антенной записывается так, как показано на рис. 108, а, а при наблюдениях интерферометром так, как на рис. 108,6. Если угловые размеры источника много больше, чем Dq , то источник не регистрируется интерферометром. Изменяя длину базы, можно определить размеры и распределение яркости источника вдоль одной координаты. Проделав такой же ряд измерений при другой ориентации базы, можно узнать распределение яркости и по другой координате. В последние годы разработана методика радиоинтерферометрических наблюдений с использованием двух раздельных приемников. В этом случае антенны интерферометра могут быть разнесены на тысячи километров. С помощью таких систем в радиоастрономии удалось получить угловое разрешение порядка 10-4 секунды дуги намного лучше, чем дают оптические телескопы. Благодаря мощному развитию радиоастрономической техники к настоящему времени исследовано радиоизлучение Солнца и Луны, планет Солнечной системы от Меркурия до Урана включительно, многих объектов, принадлежащих нашей Галактике (остатков сверхновых звезд, пульсаров, диффузных и планетарных туманностей, облаков межзвездного газа), радиоизлучение внегалактических объектов. В результате радиоастрономических наблюдений были обнаружены внегалактические объекты нового типа - квазары (см. 174). Радиоастрономические исследования позволили получить очень важные результаты во многих разделах астрофизики. С точки зрения наблюдательной радиодиапазон имеет некоторые особые преимущества перед оптическим. Так как радиоволны облаками не задерживаются, наблюдения на радиотелескопах ведутся и в облачную погоду. Кроме того, даже самые слабые космические источники радиоизлучения могут наблюдаться днем так же хорошо, как и ночью, поскольку Солнце радиодиапазоне “не подсвечивает” земную атмосферу. В инфракрасном диапазоне (на волнах длиной от 1 микрона до 1 миллиметра) используются обычные оптические телескопы. Главная трудность в этом диапазоне помехи со стороны теплового излучения телескопа и атмосферы. Кроме того, атмосфера сильно поглощает излучение в большей части инфракрасного диапазона. Однако имеется ряд участков спектра (“окна прозрачности”), в которых пропускание достаточно велико. Особые трудности возникают при наблюдениях рентгеновского излучения (длины волн от 0,1 до 10 ангстрем). Современные методы шлифовки и полировки материалов не позволяют изготовить зеркало с такой высокой точностью. Однако оказывается, что при падении и отражении луча под углом к нормали близким к 90° (“косое падение”), требования к точности изготовления зеркальной поверхности значительно ослабляются. Телескопы, использующие этот принцип, называются телескопами косого падения, и, будучи установленными на искусственных спутниках, позволяют измерять рентгеновское излучение космических источников. В рентгеновском и гамма-диапазоне для выделения более или менее узких углов используются также трубчатые коллиматоры - пакеты из параллельных трубок с достаточно толстыми стенками, установленные перед счетчиком энергичных фотонов. На длинах волн короче 10-4 (энергия кванта больше 100 Мэв) угловое разрешение получается благодаря самому методу регистрации (см. 113): такие кванты при взаимодействии с веществом дают пары электронов и позитронов, направление движения которых почти такое же, как у самого кванта.
111. Глаз как приемник излучения
В современной астрономии глаз наблюдателя используется в качестве приемника излучения не очень широко, главным образом при гидировании или в астрометрических наблюдениях. Почти все виды астрофизических исследований выполняются с помощью приемников других типов. Чувствительность глаза зависит от длины волны. В среднем глаз наблюдателя наиболее чувствителен к излучению с длиной волны l m = 5550 (зеленый цвет). По мере удаления от l m в обе стороны чувствительность глаза уменьшается и падает до нуля около 3900 и 7600 . Это - фиолетовая и красная границы видимой, или визуальной, области спектра. Зависимость чувствительности приемника излучения от длины волны называется спектральной характеристикой. Спектральную характеристику глаза часто называют кривой видности. У разных наблюдателей кривые видности несколько различаются. Средняя кривая видности дневного зрения, принятая международным соглашением, приведена на рис. 109, а. Максимум кривой видности ночного зрения сдвинут в сторону коротких волн примерно на 450 .