Потемнение диска Солнца к краю объясняется тем, что в фотосфере происходит рост температуры с глубиной. Различные точки солнечного диска обычно характеризуют углом 9, который составляет луч зрения с нормалью к поверхности Солнца в рассматриваемом месте (рис. 133). В центре диска этот угол равен нулю и луч зрения совпадает с радиусом Солнца.
На краю q = 90°, и луч зрения скользит вдоль касательной к слоям Солнца. Как было показано в 105, большая часть излучения некоторого слоя газа исходит от уровня, находящегося на оптической глубине t " 1. Когда луч зрения пересекает слои фотосферы под большим углом 9, оптическая глубина t = 1 достигается в более внешних слоях, где температура меньше. Вследствие этого интенсивность излучения от краев солнечного диска меньше интенсивности излучения его середины (рис. 134).
Точные измерения распределения яркости по диску Солнца позволяют рассчитать изменение с глубиной всех важнейших характеристик фотосферы. Такой расчет называется построением ее модели. Не вдаваясь в детали, изложим основную его идею. Определение зависимости температуры от глубины. Уменьшение яркости солнечного диска к краю в первом приближении пропорционально cos q и может быть представлено эмпирической формулой
I(q ) = I0(1 - u + u cos q ),(9.11)
где I(q ) - яркость в точке, в которой луч зрения составляет угол q с нормалью, I0 - яркость излучения центра диска, и - коэффициент пропорциональности, зависящий от длины волны. В соответствии с рис. 132 для красных лучей значение и меньше, чем для синих. Для зеленых лучей с длиной волны l = 5000 и = 0,65, I0 = 4,6 1014 эрг/см2 сек стерад для Dl = 1 см. Теперь воспользуемся тем обстоятельством, что наблюдаемая яркость примерно равна излучательной способности вещества на оптической глубине t = 1 (см. стр. 223). Поскольку при переходе от центра диска к краю изменяется угол наблюдения, различие яркости I(q ) по диску Солнца отражает соответствующее изменение излучательной способности атмосферы с глубиной (или оптической толщиной, измеряемой вдоль радиуса). Из рис. 134 видно, что количество вещества вдоль отрезка радиуса в sec q раз меньше, чем вдоль отрезка луча зрения, заключенного между теми же концентрическими слоями. Следовательно, слой, фактически наблюдаемый в данной точке диска (т.е. расположенный на оптической глубине, равной 1 вдоль луча зрения), находится на оптической глубине вдоль радиуса t = cos q . Подставляя это в (9.11), получаем, что излучательная способность атмосферы изменяется с оптической глубиной вдоль радиуса следующим образом:
I(t ) = I0(1 - u + ut ),(9.12)
или, для зеленых лучей, I5000 (t 5000) = (0,35 + 0,65t 5000)4,61014 эрг/см2 секстерадсм. Таким образом, излучение фотосферы на оптической глубине t l , отсчитываемой вдоль радиуса, приблизительно равно яркости солнечного диска в точке, где cos q = t l . Фотосфера сильно излучает, а следовательно, и поглощает излучение во всей области видимого непрерывного спектра. Это дает право применять к ее излучению законы теплового равновесия, сформулированные в 106. Тогда для каждого слоя фотосферы, расположенного на определенной глубине, можно найти такое значение температуры, при котором рассматриваемое излучение (в нашем случае с длиной волны l = 5000 )
Как видно из этой таблицы, температура в фотосфере растет с глубиной и в среднем близка к 6000°. Вспоминая выводы, сделанные в 119, мы видим, что верхние слои фотосферы совпадают с выявленной там областью минимальной температуры. Далее, из заключения того же параграфа следует, что водород в фотосфере ионизован слабо. Определение протяженности фотосферы. Чтобы оценить протяженность фотосферы, воспользуемся введенным в 120 понятием шкалы высоты. Для атмосферы давление на верхней границе P1 стремится к нулю, а потому давление у основания
P2 " r gH.(9.13)
Величину Н можно рассматривать как протяженность такой однородной атмосферы с постоянной плотностью r , которая создает то же давление у основания, что и рассматриваемая. Поэтому величину Н часто называют высотой однородной атмосферы. Она характеризует протяженность атмосферы. Действительно, выражение (9.13) можно переписать так:
mg¤ H = kT,(9.14)
где m и k суть m и R , рассчитанные на одну частицу. Как следует из последнего равенства, частицы атмосферных газов распределяются таким образом, что их наиболее вероятная кинетическая энергия равна потенциальной энергии, соответствующей подъему на высоту Н, совпадающую со шкалой высоты (9.5). Поскольку фотосфера состоит главным образом из неионизованного водорода, для нее m " 1. Подставляя это значение в формулу (9.14) и полагая в ней T = 6000° и g¤ = 2,7104 см/сек2, находим, что
(9.15)