В жизни метод может выглядеть следующим образом. От отдела качества получают статистические данные по процессу. Альтернативно данные можно получить из диаграмм процесса из системы автоматизации. Рассчитываются дисперсии и определяются отклонения. Данные сравниваются с дисперсиями по процессу. Выделяются критические участки процесса, вносящие максимальный вклад в дисперсию. Производится анализ по контурам. На основе анализа принимается решение о замене существующих и внедрении наиболее точных контуров регулирования. Рассчитывается эффективность через ужесточение допусков на процесс, снижение норм расхода и экономическая эффективность в целом.
Все методы в полном объеме реализуются только на компьютере. Построенные при помощи указанных методов обобщенные модели распределения особенно удобны при выполнении автоматического регулирования процессов с меняющимися законами распределения и, очевидно, могут быть вложены в виде дополнительного программного обеспечения в систему автоматизации.
Кроме этого, в ходе выполнения технологического процесса и периодических поднастроек, исходные заданные значения регулирования могут искажаться. В этом случае включение программы (например, NELPROF) в систему автоматического регулирования с постоянным пересчетом клапанов на текущее значение технологического процесса будет четче выдавать общую картину диапазона регулирования и показывать места выхода текущих характеристик за пределы диапазона регулирования клапана. В частности, такие задачи наиболее характерны при частой смене производительности.
Исходные заданные значения регулирования искажаются и из-за расширения погрешностей регулирования и\или из-за износа самого клапана. В качестве примера можно привести последовательность выявления проблемы точности, как в процессе, так и в самом клапане веса м2
. Пусть контролируемым параметром будет вес м2 рулона. После отладки процесса берется выборка рулонов, и оцениваются результаты измерения веса м2 каждого рулонов. Получаем выборку. Спустя заданное время проводим эту процедуру второй раз. Результаты измерений смешиваются, и каждому значению присваивается ранг. Вычисляются суммы рангов для каждой из выборок, определяются значения критерия Уилкоксона и сравниваются со значениями для риска 1-го рода. Выявляется разница. Если она существенна, что это означает, что необходимо вмешаться в процесс, т.к. что-то в распределении веса м2 рулонов изменилось, хотя брак еще не появился. Произведя еще вычисления, можно установить, что именно изменилось, в какой из характеристик процесса нарастает опасная тенденция. Ими может быть уровень настройки, о чем можно судить по изменению среднего арифметического, разброс значений, т.е. точность отслеживания веса м2, о чем можно судить по изменению дисперсии.Для регулирующих клапанов особенно важно, чтобы процесс находился в наиболее эффективной линейной части регулирования. Его можно назвать центром процесса или распределения, и он соответствует традиционно задаваемому диапазону регулирования 50-70%. Регулирование на этом участке будет наиболее свободно от погрешностей и будет ухудшаться с приближением к выходу за его пределы. Это также означает, что в случае ухода от центра процесса (распределения) и приближением к его концам будет появляться дополнительный разброс значений. И это также означает, что необходимо поддерживать настройку клапана и удержание диапазона регулирования в области центра процесса. В случае выхода клапана из зоны эффективного регулирования с максимальной линеаризацией, и работой в диапазоне ниже 40% или более 70%, отклонения в регулируемых параметрах могут иметь критические значения. Расчеты погрешности по левой и правой границе диапазона регулирования дадут точные значения общей погрешности и помогут более точно сформировать требования к точности вблизи этих границ.
Учитывая частые изменения производительности, использование программы NELPROF в режиме он-лайн поможет производству и технологам вовремя увидеть проблемы нарастания погрешности в связи с выходом за нижнюю или верхнюю границу пропускной характеристики. Так, по данным аудита одного из ЦБК, свыше 50% регулирующих клапанов работало при угле открытия ниже 40%, что было главной проблемой накопления ошибок при регулировании. В случае если бы в системе автоматизации была бы установлена программа NELPROF, технологи смогли бы выявить проблему значительно раньше и задать ограничения по процессу или снижению производительности.
Таким образом, уравнения погрешностей или их совокупностей, если затрагиваются несколько выходных характеристик, могут служить расчетным аппаратом при решении задач отстройки системы от нежелательных уровней выходных характеристик, либо задачи доводки последних до необходимой величины.