Читаем Курс теоретической астрофизики полностью

Ясно, что в такой постановке теория фотосфер оказывается чрезвычайно сложной. Поэтому представляет большой интерес возможность упростить теорию, сделав предположение о детальном равновесии радиативных переходов в линиях (т.е. о равенстве между числом переходов с одного дискретного уровня на другой и числом обратных переходов). Тогда в основных уравнениях теории из всех радиативных переходов должны приниматься во внимание лишь переходы в непрерывном спектре (т.е. фотоионизации и рекомбинации). Такое предположение можно сделать потому, что непрозрачность в линиях значительно превосходит непрозрачность в непрерывном спектре.

Теория фотосфер при отсутствии ЛТР с указанным выше предположением разрабатывалась Калкофеном и другими авторами. Были рассчитаны модели фотосфер горячих звёзд, состоящих только из водорода или из водорода и гелия. Полученные результаты для видимой области спектра в общем не сильно отличаются от тех, к которым приводит теория при наличии ЛТР. Однако расхождение между результатами оказывается очень большим в области лаймановского континуума.

Теория фотосфер при отсутствии ЛТР подробно изложена в книге Д. Михаласа [8]. Так как эта теория очень сложна, то большое значение приобретают методы решения исходных уравнений. В настоящее время на практике применяются два метода. Один из них заключается в использовании итерационного процесса, в котором в качестве первого приближения берётся решение задачи для случая наличия ЛТР. Другой метод основан на замене уравнений данной теории системой алгебраических уравнений для всех искомых величин в разных точках фотосферы. Очевидно, что последний метод требует применения очень мощных ЭВМ. Результаты расчётов моделей фотосфер при отсутствии ЛТР содержатся как в уже упомянутой монографии [8], так и во многих оригинальных исследованиях. Проблема отклонения от ЛТР в поверхностных слоях звёзд будет затронута также при рассмотрении образования линейчатых спектров звёзд (см. §9).

§ 7. Специальные вопросы теории фотосфер

1. Протяжённые фотосферы.

Предположение о том, что толщина фотосферы гораздо меньше радиуса звезды, нельзя применять к некоторым особым звёздам (например, к звёздам типа Вольфа — Райе). Так обстоит дело тогда, когда плотность в фотосфере сравнительно медленно убывает с увеличением расстояния от центра звезды. В таких фотосферах слои одинаковой плотности должны считаться не плоскопараллельными, а сферическими.

Найдём зависимость температуры от оптической глубины в данном случае. Для этого мы должны воспользоваться уравнением переноса излучения в форме (1.20). Проинтегрировав это уравнение по всем частотам, получаем

cos

I

r

-

sin

r

I

r

=-

I

+

,

(7.1)

где — средний коэффициент поглощения. Обозначая, как обычно, =S, в качестве условия лучистого равновесия имеем

S

=

I

d

4

.

(7.2)

Интегрирование (7.1) по всем направлениям при учёте (7.2) приводит к формуле

H

=

C

r^2

,

(7.3)

где C — некоторая постоянная. (Очевидно, что 4C есть светимость звезды.)

Умножая (7.1) на cos и интегрируя по всем направлениям, в приближении Эддингтона находим

4

3

dS

dr

=-

H

,

(7.4)

или, на основании (4.15),

ac

3

dT

dr

=-

H

.

(7.5)

Для коэффициента поглощения возьмём выражение

~

^2

Ts

(7.6)

[сравните с формулами (5.35) и (5.36)] и допустим, что плотность в фотосфере обратно пропорциональна некоторой степени расстояния от центра звезды, т.е.

~

1

rn

.

(7.7)

Подставляя (7.3), (7.6) и (7.7) в уравнение (7.5) и интегрируя его, получаем

T

=

T

r

r

2n+1

4+s

,

(7.8)

где T — температура на расстоянии r.

Пользуясь формулами (7.7) и (7.8), можно также легко получить зависимость оптической глубины от расстояния r. Подстановка указанных формул в соотношение d=- dr и интегрирование даёт

=

r

r

2

4n-s-2

4+s

(7.9)

где под r теперь понимается расстояние от центра звезды при =1. Из (7.8) и (7.9) получаем искомую зависимость T от :

T

=

T

2n+1

2(4n-s-2)

.

(7.10)

Возьмём, например, n=2 и s=4. Тогда имеем

T

=

T

5/4

.

(7.11)

Таким образом, в протяжённой фотосфере температура возрастает с оптической глубиной гораздо быстрее, чем в фотосфере, состоящей из плоскопараллельных слоёв.

Знание зависимости T от =1 даёт возможность вычислить распределение энергии в непрерывном спектре звезды. Для этого надо воспользоваться уравнением переноса излучения (1.20), положив в нём, на основании гипотезы о локальном термодинамическом равновесии, =B(T). Первоначально в теории протяжённых фотосфер принималось, что коэффициент поглощения не зависит от частоты. В таком случае кривая распределения энергии в непрерывном спектре звезды получалась очень сильно отличающейся от планковской кривой — с большим избытком излучения в ультрафиолетовой части спектра. Однако при учёте зависимости коэффициента поглощения от частоты указанного избытка излучения не получается вследствие сильного поглощения за границами основных серий атомов. Следует также иметь в виду, что в протяжённых фотосферах возможны очень большие отклонения от локального термодинамического равновесия.

2. Покровный эффект.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука