Читаем Квант. Путеводитель для запутавшихся полностью

Хотя мы знаем об успехах в генетике и клонировании животных, а однажды, возможно, и людей, важно подчеркнуть, что в этих случаях клон не идентичен оригиналу, а лишь наделен той же генетической схемой. В квантовой механике клон во всех отношениях идентичен частице или квантовой системе, с которой он скопирован. В 1982 году Уильям Вуттерс и Войцех Зурек вывели простое математическое доказательство невозможности идеального клонирования произвольной квантовой системы. Конечно, если мы заранее знаем квантовое состояние, теоретически мы можем сконструировать устройство для квантового клонирования, которое будет производить идентичные копии этого состояния, однако ни одно такое устройство не будет универсально применимо к любой квантовой системе.

Чтобы клонировать объект, нам прежде всего нужно получить всю информацию о нем. Это достигается путем проведения измерений. Собрав все необходимые сведения, мы можем использовать их для конструирования клона. Но вы уже видели, что измерение квантовой системы не позволяет нам этого – в процессе измерения что-то неизменно теряется. Это происходит потому, что мы конвертируем квантовую информацию в классическую. Например, фотон, пребывающий в произвольной суперпозиции различных состояний спина или поляризации, при измерении откажется от одного из этих состояний, но не от суперпозиции. Следовательно, мы не можем знать относительную амплитуду разных частей оригинальной суперпозиции или то, как именно они комбинируются (их фазу). Для клонирования этого недостаточно.

После доказательства Вуттерса и Зурека ученые выяснили, что теоретически они могут сконструировать так называемое универсальное квантовое устройство клонирования, которое, не будучи совершенным, может обладать определенным коэффициентом успешности, или «точностью».

Квантовое клонирование может оказаться полезным, если мы когда-нибудь сумеем построить квантовый компьютер. Вместо осуществления последовательности операций на кубите, этот кубит можно будет сначала несколько раз клонировать и обеспечить тем самым гораздо более эффективную обработку данных при одновременной работе всех клонов. Более важно в настоящее время понять, насколько безопасной будет квантовая криптография, если шпион сможет создавать хотя бы примерные клоны фотонов, используемых для передачи сообщений.

Как построить квантовый компьютер

В настоящее время существует несколько способов реализации мечты о практическом создании квантового компьютера. В основе всех этих способов лежит идея манипуляции запутанными суперпозициями атомов, но все они в итоге сталкиваются с одной и той же проблемой: как не допустить возникновения декогеренции, которая может разрушить все тонкие вычисления. Я опишу две техники, которые исследуются в настоящее время. Одна из них эксплуатирует идею лазерного манипулирования ультрахолодными атомами, а другая использует ЯМР (ядерный магнитный резонанс).

Первый метод я уже упоминал при описании различных экспериментов, проведенных в Париже (группа ENS) и в Колорадо (группа NIST). К примеру, группа NIST предложила способ, перекликающийся с оригинальной идеей Дэвида Дойча из его статьи 1985 года. Они предложили поймать цепочку атомов, отстоящих друг от друга примерно на двадцать микронов, в так называемый квантовый процессор с ионной ловушкой. Пары пересекающихся лазерных пучков вводят каждый атом (выступающий в качестве одного кубита) в суперпозицию двух энергетических состояний. Атомы на самом деле представляют собой заряженные ионы и потому чувствуют электрическое отталкивание друг друга, а следовательно, находятся во взаимодействии и в общем запутанном состоянии. Они контролируемым образом вибрируют, и их относительное движение связывается путем обмена квантами вибрационной энергии.

Можно также использовать технику ядерного магнитного резонанса, где спин атомных ядер в специально сконструированных молекулах контролируется магнитным полем и каждое ядро ведет себя, как миниатюрный стержневой магнит. Конечно, мы не можем отследить состояния спина отдельного ядра, но здесь значение имеют, скорее, общие свойства материала, содержащего сто миллиардов триллионов молекул. Каждая молекула представляет собой квантовый процессор ЯМР, а кубитами становятся ядра атомов, из которых состоит молекула.

Перейти на страницу:

Все книги серии Prisma

Похожие книги

История Бога: 4000 лет исканий в иудаизме, христианстве и исламе
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе

Откуда в нашем восприятии появилась сама идея единого Бога?Как менялись представления человека о Боге?Какими чертами наделили Его три мировые религии единобожия – иудаизм, христианство и ислам?Какое влияние оказали эти три религии друг на друга?Известный историк религии, англичанка Карен Армстронг наделена редкостными достоинствами: завидной ученостью и блистательным даром говорить просто о сложном. Она сотворила настоящее чудо: охватила в одной книге всю историю единобожия – от Авраама до наших дней, от античной философии, средневекового мистицизма, духовных исканий Возрождения и Реформации вплоть до скептицизма современной эпохи.3-е издание.

Карен Армстронг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература