Читаем Квант. Путеводитель для запутавшихся полностью

Когда фотон влетает в интерферометр, он встречает на пути полупосеребренное зеркало, которое выполняет роль «расщепителя пучка» и разделяет волну фотона на два компонента, один из которых проходит сквозь зеркало, а другой отражается. Оба компонента далее отражаются от зеркал и снова встречаются во втором полупосеребренном зеркале. Если два промежуточных зеркала расположены аккуратно, интерференция двух путей может быть настроена так, чтобы фотон всегда уходил в одном направлении. Конечно, если поставить детектор рядом с одним из серединных (полностью отражающих) зеркал, чтобы видеть, в каком направлении улетает фотон, то квантовая интерференция, как и в случае с фокусом с двумя прорезями, разрушается. Теперь каждый фотон проходит не по обоим путям одновременно, а либо по одному из них, либо по другому. В половине случаев второе полупосеребренное зеркало обеспечит вылет фотона из устройства в том же направлении, в котором он вылетел бы, если бы не было сделано никаких измерений. Однако в другой половине случаев фотоны будут вылетать в другом направлении и регистрироваться внешним детектором. Итак, в отсутствие измерений детектор не зарегистрирует ни одного фотона, но если за одним из зеркал будет установлено наблюдение, то детектор зарегистрирует половину фотонов, так как не будет разрушительной интерференции, которая сможет помешать фотонам вылетать в этом направлении.

В устройстве похитителя драгоценностей вместо нижнего зеркала используется бриллиант. Если бриллиант фальшивый, то он отражает свет, поэтому нижний детектор не реагирует. Однако, если бриллиант подлинный, он выступает в качестве измерительного прибора. В половине случаев фотон достигает бриллианта и поглощается им, в результате чего бриллиант разрушается. Но это неважно. В другой половине случаев фотон следует по иному маршруту. Здесь он сталкивается с выбором возле второго полупосеребренного зеркала, где он либо отражается наверх (прочь от нижнего детектора), либо проходит сквозь зеркало и заставляет детектор среагировать. Таким образом, при проверке каждого настоящего бриллианта детектор будет реагировать в четверти случаев. Это означает, что проверке подвергается подлинный камень, но при этом он не разрушается, так как фотон не измеряется при следовании поэтому пути! Обратите внимание на эту тонкость. Фальшивый бриллиант не дает измерений, поскольку мы не получаем от него информацию, «в какую сторону» летит фотон.

Как только вор услышит писк детектора, он должен вытащить соответствующий бриллиант и сбежать из хранилища. Он провел квантовое измерение, даже не прикоснувшись к измеряемому объекту. Может, в Голливуде заинтересуются подобным сценарием? Я бы с радостью сыграл квантового физика – похитителя бриллиантов. Само собой, в компании Брэда Питта и Джорджа Клуни.


Теперь вместо нижнего зеркала интерферометра используется бриллиант.

Вверху: Фальшивый бриллиант отражает свет, как бы это сделало обычное зеркало. Два пути интерферируют друг с другом, поэтому нижний детектор не регистрирует ни одного фотона.

Внизу: Настоящий бриллиант поглощает фотон и разрушается. Однако это равносильно проведению измерения, так как теперь мы знаем, по какому маршруту пошел фотон, а в половине случаев с подлинным бриллиантом на месте зеркала фотон будет выбирать другой путь, избегая встречи с бриллиантом. Так как интерференции в таких условиях не возникает, нижний детектор время от времени регистрирует фотоны. Когда это происходит, мы понимаем, что перед нами подлинный бриллиант, хотя ни один фотон к нему и близко не подходит!

ЭПР-парадокс и теорема Белла

В своей оригинальной форме эксперимент Эйнштейна – Подольского – Розена должен был показать, что квантовая механика дает неполное описание реальности, а все ее странности объясняются тем, что мы не до конца понимаем устройство субатомного мира. Если поставить это в исторический контекст, аргументы, представленные в статье ЭПР, были частью длительного спора, развернувшегося в 1920 – 1930-е годы между двумя гигантами физики XX века Эйнштейном и Бором. В то время, конечно, их разногласия носили лишь философский характер, так как никто не знал, как осуществить подобный эксперимент на практике.

Перейти на страницу:

Все книги серии Prisma

Похожие книги

История Бога: 4000 лет исканий в иудаизме, христианстве и исламе
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе

Откуда в нашем восприятии появилась сама идея единого Бога?Как менялись представления человека о Боге?Какими чертами наделили Его три мировые религии единобожия – иудаизм, христианство и ислам?Какое влияние оказали эти три религии друг на друга?Известный историк религии, англичанка Карен Армстронг наделена редкостными достоинствами: завидной ученостью и блистательным даром говорить просто о сложном. Она сотворила настоящее чудо: охватила в одной книге всю историю единобожия – от Авраама до наших дней, от античной философии, средневекового мистицизма, духовных исканий Возрождения и Реформации вплоть до скептицизма современной эпохи.3-е издание.

Карен Армстронг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература