Читаем Квант. Путеводитель для запутавшихся полностью

Хотя нам следует благодарить квантовую механику за технологию, стоящую за вездесущими микрочипами, распределение электронов в атомах, которое позволяет существование полупроводников, может и не казаться вам особенно странным квантовым явлением. Поэтому мне следует упомянуть еще одно устройство, которое также применяется в современных электронных схемах и эксплуатирует квантовую механику более очевидным образом. Туннельный диод использует тот факт, что электроны могут перепрыгивать изолирующий слой, проходить сквозь который они теоретически не имеют права. Но не пытайтесь представить их в виде крошечных частиц, которые перепрыгивают через стену в классическом смысле. Точнее будет сказать, что волновые функции электронов просачиваются за пределы изолирующей области. Благодаря такому квантовому скачку электроны получают способность преодолевать расстояния гораздо быстрее, чем при движении обычным путем через транзистор. В связи с этим такие устройства используются в качестве очень быстрых переключателей в микропроцессорах.

Отличная идея ищет применение

Именно так физики отнеслись к лазеру, когда он был изобретен в 1958 году. Сегодня лазер применяется во множестве сфер, от строительства кораблей до глазной хирургии, работы CD-плееров и кассовых аппаратов. Но его действие не ограничивается испусканием мощного пучка света. Физика лазера представляет собой чистую квантовую механику. В отличие от микрочипа, который во многом основывается на свойствах электронов и их строгом подчинении принципу исключения, лазер полагается на товарищество и кооперацию фотонов.

Когда электрон получает энергию, поглощая фотон, он получает возможность перепрыгнуть на более высокую атомную орбиту. Разница в энергии между двумя орбитами равняется энергии поглощенного фотона, которая, в свою очередь, зависит от его частоты согласно формуле Планка. Вскоре после этого «возбужденный» электрон спонтанно опускается обратно, испуская фотон той же самой энергии. Этот процесс называется спонтанным излучением и лежит в основе работы электрической лампочки. Идущий по вольфрамовой нити ток нагревает ее, заставляя электроны атомов вольфрама набирать энергию и в возбужденном состоянии перескакивать на более высокие орбиты. Снова падая обратно, они испускают фотоны широкого диапазона частот, включая и те, что находятся в видимом световом спектре.

Лазер работает иначе. Если не позволять электрону самому упасть на изначальный уровень, а стимулировать его к этому путем столкновения с входящим фотоном, на выходе мы получим два фотона – оригинальный и новый, испущенный электроном. Два этих фотона затем могут подталкивать к падению и другие возбужденные электроны, которые будут выпускать все новые и новые фотоны, что в некотором роде будет напоминать цепную реакцию. Этот процесс называется вынужденным излучением и дает название лазеру (акроним от англ. light amplification by stimulated emission of radiation – усиление света посредством вынужденного излучения).

Будучи бозонами, вылетающие фотоны пребывают в том же квантовом состоянии, что и налетающие фотоны. У них одинаковая длина волны, они находятся в одной фазе и движутся в одном направлении. В связи с этим свет лазера считается когерентным[64]. Он может обладать очень высокой интенсивностью и фокусироваться в узкий пучок.

Первый лазер был создан в 1960 году, и с тех пор ему было найдено множество применений. Лазеры могут сваривать, разрезать и плавить. Их можно найти на автомобильных конвейерах и в текстильной промышленности. С их помощью можно проверять, ровно ли проложены каналы, и точно подгонять друг под друга крупные детали тяжелой промышленности. Их точные длины волн можно настроить и применять в областях вроде интерферометрии для сверхточного измерения длин. (К примеру, лазеры использовались для определения расстояния от Земли до Луны с точностью до нескольких сантиметров.) Они также используются для создания голограмм – трехмерных изображений с широким спектром применения, в том числе, возможно, даже в качестве невероятно эффективных устройств для хранения информации.

Лазеры также можно изготовить из полупроводниковых диодов способом, который напоминает производство светодиодов. Эти дешевые и сердитые твердотельные лазеры характеризуются стойкостью и надежностью, а по размерам сравнимы с песчинкой. Сегодня такие устройства используются в коммуникациях для передачи света по оптоволокну, а также в CD – и DVD-плеерах и кассовых аппаратах, где они сканируют штрихкоды.


Перейти на страницу:

Все книги серии Prisma

Похожие книги

История Бога: 4000 лет исканий в иудаизме, христианстве и исламе
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе

Откуда в нашем восприятии появилась сама идея единого Бога?Как менялись представления человека о Боге?Какими чертами наделили Его три мировые религии единобожия – иудаизм, христианство и ислам?Какое влияние оказали эти три религии друг на друга?Известный историк религии, англичанка Карен Армстронг наделена редкостными достоинствами: завидной ученостью и блистательным даром говорить просто о сложном. Она сотворила настоящее чудо: охватила в одной книге всю историю единобожия – от Авраама до наших дней, от античной философии, средневекового мистицизма, духовных исканий Возрождения и Реформации вплоть до скептицизма современной эпохи.3-е издание.

Карен Армстронг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература