Здесь и нашлось еще одно применение для невероятно точных лазеров – они стали устройством для манипулирования отдельными атомами. Когда атомы с помощью электромагнитных полей помещают в ультравысокий вакуум, точно настроенные и нацеленные лазеры могут использоваться на их охлаждения. Должен заметить, что наличие у атомов «температуры» просто означает, что атомы не стоят на месте: чем более возбужден атом, тем выше его температура. Свет лазера заставляет атом терять энергию и «остывать». Сегодня лазеры могут спокойно использоваться для охлаждения атомов до температуры, которая менее чем на одну тысячную градуса выше абсолютного нуля. Затем они могут функционировать в качестве оптических пинцетов, чтобы удерживать атомы на месте, а также толкать их при помощи точных импульсов энергии, тем самым отправляя их в квантовые суперпозиции и запутанные состояния.
Примечательно, что эти техники удалось успешно применить лишь в последнее десятилетие прошлого века, поэтому в последние несколько лет на страницах журнала
Вот пример того, как быстро меняются идеи. Студентов-физиков долгое время учили, что «увидеть» можно только объект, размерами не меньше длины волны того света, который на него направляют. Это привело к изобретению электронного микроскопа, описанного в предыдущей главе. Длина волны видимого света составляет примерно половину микрона (одной тысячной миллиметра), а атомы более чем в тысячу раз меньше. Теперь учебники надо переписывать: сегодня исследователи без особого труда могут ловить отдельные атомы, рассматривать и отслеживать их и вообще манипулировать ими на свое усмотрение, используя лазерные пучки видимого света.
Прежде чем я расскажу, как некоторые из этих техник в будущем смогут быть использованы для создания устройства, называемого квантовым компьютером, давайте рассмотрим несколько экспериментов. Каким образом видимый свет может позволить нам разглядеть нечто столь малое, как атом? Длина его волны для этого явно слишком велика.
Как отследить атом
Сегодня физики могут обнаруживать образец размером несколько тысяч атомов, направляя на него свет, но происходит это не так, как вы думаете: они не просто отражают свет от образца, как при использовании микроскопа. Если частота света настроена таким образом, чтобы его фотоны обладали энергией, которая, согласно формуле Планка, соответствует энергии атомного перехода, то некоторые фотоны поглощаются атомами. Не забывайте, что под переходом подразумевается лишь то, что один из электронов атома перепрыгивает на более высокий энергетический уровень. Таким образом, используя свет этой «резонирующей» частоты, мы наблюдаем сокращение общего количества фотонов, поскольку несколько тысяч особенно смелых фотонов жертвуют собой ради атомов. Так мы и узнаем о наличии атомов.
Связанная с этим весьма хитроумная идея позволяет обнаружить единичный атом. Вместо того чтобы светить на него лазерным светом, настроенным на резонирующую частоту, мы смотрим, что происходит со светом, частота которого не позволяет ему быть поглощенным. Сначала отдельные атомы ловятся и охлаждаются, а затем по одному впускаются в крошечное устройство, называемое оптическим резонатором, длина которого составляет малую долю миллиметра, а стенки обладают высоким индексом отражения. Внутрь резонатора направляется свет очень слабого лазера, в результате чего в любой момент времени вместе с атомом от стенок отражается в среднем всего один фотон! Каждый раз, когда этот фотон встречается с атомом, он чуть замедляется при движении «сквозь» атом[73]
(точно так же, как свет замедляется при движении сквозь воду или стекло). Это вызывает небольшое изменение волновой функции протона, которое постепенно нарастает, пока он тысячи раз проходит сквозь атом, и в конце концов эффект становится измеримым.Физики Института квантовой оптики общества Макса Планка в Германии использовали эту технику, чтобы отследить траекторию атома, движущегося внутри резонатора. Само собой, происходящее в таком случае равносильно постоянному наблюдению за атомом, поэтому он всегда ведет себя, как классическая частица.
Наблюдая декогеренцию в действии
Ряд экспериментов в сфере квантовой оптики действительно привел к появлению громких заголовков в научных журналах последних лет. Три четверти века физики-теоретики и философы обсуждали такие фундаментальные идеи, как где проходит граница между квантовым и классическим мирами, используя мысленные эксперименты и аргументы, основанные на различных подходах к интерпретации квантовой механики. Теперь эти идеи наконец-то можно проверить в лабораторных условиях.