Таблица 7. Декартовы координаты атомов в молекуле метана,Ао
Собственные значения nl равны 2,000; 1,150; 1,009; 1,009; 0,000. Таким образом, одна из одноцентровых орбиталей, представленная в базисе АО
столбцом
оказывается естественной МО, строго локализованной на связи С-Н1 и заселенной двумя электронами. Эту локализованную МО можно записать в виде следующей линейной комбинации базисных атомных орбиталей:
или
где
гибридная АО углерода, ориентированная вдоль связи С-Н1, Существенно, что s-характер этой гибридной орбитали равен 33%, что соответствует sр2-гибридизации атома углерода и явно противоречит распространенному в химической литературе мнению о sp3-гибридизации углерода в метане и других насыщенных соединениях. Такое противоречие является следствием того что метод проектирования приводит к неортогональным наборам локализованных МО и гибридных АО, в то время как в теоретической химии обычно используется понятие об ортогональных орбиталях. Ортогонализация неортогонального набора четыоех эквивалентных гибридных АО hiC по методу Лёвдина приводит в рассматриваемом случае (СН4) к четырем ортогональным эквивалентным гибридным АО, которые идентичны гибридным АО углерода в метане, полученным из соображений симметрии. Вместе с тем следует отметить, что завышенный s-характер неортогональных гибридных АО углерода не является случайным. Как повышенная заселенность 2s-орбитали углерода в метане (1,2 против 1,0 для каждой из 2р-орбиталеЙ) он отражает "энергетическую предпочтительность" 2s-орбитали углерода по сравнению с его 2р-орбиталыо. В связи с этим уместно привести потенциалы ионизации свободного, т. е. химически не связанного, атома углерода, соответствующие его валентным орбиталям. Для 2s22p2-конфигурации I2s = 16,6 эВ и I2p = 12 4 эВ; для 2s2p3-конфигурации I2s = 24,7 эВ и I2p = 12,4 эВ.
Существенно для понимания особенностей метода проектирования то, что в отличие от обсуждавшихся ранее методов этот метод не приводит к смешиванию МО σ- и π-типа локализованных на кратных связях, например, в молекулах N2, CO, BF, C2H2 и C4H4. Однако вычисленные методом проецирования локализованные МО σ- и π-типа могут быть переведены дополнительным унитарным преобразованием в эквивалентные банановые МО аналогичные тем, которые были получены Эдмистоном и Рюденбергом (см. табл. 4.3).
Метод эталонной матрицы плотности. Метод эталонной матрицы плотности был предложен в 1968 г. Мак-Вини и Дель Ре [63] и получил дальнейшее развитие в работе [22].
Следуя Мак-Вини и Дель Ре, допустим, что МО могут быть локализованы в орбитали неподеленных и связывающих электронных пари, возможно, в вакантные орбитали некоторых атомов. Это означает, что каждую локализованную МО можно представить либо гибридной атомной орбиталью (ГАО), либо линейной комбинацией двух ГАО, относящихся к непосредственно связанной паре атомов. Будем предполагать пока, что заселенности этих гибридных АО равны, т. е. связи строго ковалентны. При учете поляризации двухцентровых локализованных связей орбитали неподеленных электронных пар и вакантные АО следовало бы рассматривать как случай предельной поляризации и выделять его особо не имело бы смысла. В силу сделанных допущений одноэлектронная матрица плотности в ортонормированном по методу Лёвдина многоцентровом базисе ГАО состоит из целых чисел 0, 1,2, причем каждой связывающей электронной пара соответствует блок
Коэффициенты гибридизации, образующие матрицу
где А, В, С, ...- атомы в молекуле и одновременно соответствующие им наборы АО, определялись Мак-Вини и Дель Ре из условия минимума суммы орбитальных энергий
b предположении, что матрица Фока F(P) фиксирована и не меняется при преобразовании U. Однако Eoрб составляет лишь часть полной электронной энергии Eэл, и то обстоятельство, что изменение δEэл совпадает с δEорб в линейном по δР приближении, не может служить обоснованием критерия Мак-Вини и Дель Ре, так как величина Еэл должна быть стационарной относительно варьирования матрицы плотности, и определяюдими для ее изменения следует считать приближения более высокого порядка. В то же время вследствие зависимости F от матрицы плотности и, следовательно, от U точная минимизация Еэл относительно U является довольно сложной задачей.