Читаем Квантовая хромодинамика: Введение в теорию кварков и глюонов полностью

Попытаемся проквантовать свободные глюонные поля. Лагранжиан (янг-миллсовский) для свободного глюонного поля имеет вид

0

= -

1

G

0μν

G

0a

 ,

YM

4

a

μν

G

0μν

= ∂

μ

B

 - ∂

ν

B

 ;

a

 

a

 

a

(4.1)

здесь индекс 0 обозначает свободные поля. Выражение (4.1) аналогично лагранжиану, описывающему восемь невзаимодействующих электромагнитных полей. Оно инвариантно относительно свободных калибровочных преобразований:

B

→ B

- ∂

μ

 .

a

a

a

(4.2)

Рассмотрим проблемы и преимущества, связанные с калибровочной инвариантностью. В силу того что поля B определены неоднозначно, невозможно непосредственно проквантовать лагранжиан (4.1). В самом деле, предположим, что для этого применяется стандартная процедура канонического квантования. Определим импульсы, канонически сопряженные полям B0a. Опуская индексы 0, обозначающие свободные поля, для импульсов π получаем выражения

π

μ

(x) =

∂ℒ

YM

 = G

μ0

 ,

a

∂(∂

0

B

)

a

(4.3)

из которых видно, что нулевые компоненты импульсов π0a(x) тождественно равны нулю. Канонические коммутационные соотношения записываются в виде

μ

(x),B

ν

(y)]δ(x

0

 - y

0

) = -iδ

 

g

μν

(x - y).

a

b

 

 

ab

(4.4)

Нулевые компоненты полей B0a(x) коммутируют со всеми операторами и, таким образом, являются c -числами.

В этом случае имеются две возможности. Первая состоит в выборе такой калибровки, в которой отсутствовали бы нефизические степени свободы. Но при этом явно нарушается лоренц-инвариантность. Вторая возможность заключается в том, чтобы все компоненты полей Bμ рассматривать единообразно. Поскольку при этом сохраняются нефизические степени свободы, возникает необходимость введения пространства с индефинитной метрикой. Отложим обсуждение физических калибровок до следующего параграфа и рассмотрим ковариантные калибровки.

Как известно из электродинамики (на данном уровне изложения различий между КХД и КЭД нет), нельзя наложить лоренцеву калибровку вида ∂μBμa = 0 и сохранить при этом ковариантные коммутационные соотношения. Поэтому приходится отказаться от рассмотрения соотношения ∂B = 0 как операторного уравнения. Введем пространство Гупты—Блейлера ΧGB, в котором соотношение (4.4) принимается в приведенном выше виде. Покажем, что это приводит к возникновению в пространстве ΧGB индефинитной метрики. Назовем физическими векторы, удовлетворяющие условию

⟨Φ

 

|∂

 

B

μ

(x)|Φ

 

⟩=0 .

ph

μ

a

ph

(4.5)

Если теперь приравнять друг другу векторы, различающиеся на вектор с нулевой нормой, т. е. принять

ph

⟩∼|Φ'

ph

= |Φ

ph

⟩+|Φ

(0)

⟩ ,

(4.6)

где ⟨Φ00⟩ = 0, то мы получим пространство физических векторов ℒ.

Чтобы сохранить соотношение (4.4), необходимо модифицировать лагранжиан (4.1), добавив к нему член -(λ/2)∑a(∂μBμa)2 (фиксирующий калибровку). Теперь выражение для лагранжиана принимает вид

 

=

 -

1

G

μν

G

 

 -

λ

(∂

 

B

μ

)

2

.

λYM

4

a

aμν

2

μ

a

 

a

 

a

(4.7)

Такая модификация не приведет к физическим следствиям, по крайней мере в случае свободных полей, так как матричные элементы добавленного члена по физическим векторам в силу условия (4.5) обращаются в нуль. Импульсы, канонически-сопряженные полям B, теперь имеют вид

π

μ

(x) = G

μ0

(x) - λg

μ0

 

B

ν

(x) ,

λa

a

 

ν

a

(4.8)

и ни одна из их компонент не обращается в нуль. Следовательно, можно сохранить соотношение (4.4) без изменений. Но при этом возникает индефинитная метрика. Рассмотрим, например, соотношение (4.4) при μ = 0:

λ[∂

 

B

μ

(x),B

ν

(y)]δ(x

 

- y

 

)=iδ

 

δ

 

δ

 

(x-y) .

μ

a

b

0

0

ab

4

(4.9)

Это соотношение оказывается знаконеопределенным. Чтобы убедиться в этом, перейдем в импульсное пространство. Положим калибровочный параметр λ = 1 и введем канонические тетрады ε(p)(k), связанные с некоторым светоподобным вектором k:

ε

(0)

μ

μ0

;

ε

(i)

0

=0,

ε

(i)

k=0,

i=1,2,

ε

(3)

μ

=

1

k

0

k

μ

μ0

;

ε

(i)

ε

(j)μ

 = -δ

 

, i,j = 1,2,3.

μ

 

ij

(4.10)

Компоненты ε(i)(i=1,2) соответствуют физическим частицам с нулевой массой, ε3 представляет собой продольную компоненту, а компонента ε0 соответствует объекту со спином нуль. Поля B можно разложить по операторам рождения и уничтожения. Такое разложение имеет вид

B

μ

b

(x)

=

1

(2π)

3/2

d

k

2k

0

 

p

{

e

-ik⋅x

ε

(ρ)μ

(k)a

ρ

(b,k)

+

e

ik⋅x

ε

(p)μ

(k)

*

a

+

(b,k)

}

.

 

 

 

p

(4.11)

Используя соотношения (4.4), получаем следующие коммутационные соотношения для операторов a и a+:

[a

 

(b,k),a

+

(b',k')] = -g

 

δ

 

2k

0

δ(

k-

k'),

μ

ν

μν

bb'

(4.12)

из которых видно, что вакуумное среднее ⟨0|a0(k)a+0(k)|0⟩ в рассматриваемой нами калибровке отрицательно.

Исходя из соотношений (4.12), можно вычислить пропагатор калибровочного поля B. Введя обозначение

⟨TB

μ

(x)B

ν

 

= D

μν

(x),

a

b

0

ab

глюонный пропагатор при произвольном значении параметра λ можно записать в виде

D

μν

(x) = δ

 

i

d

4

ke

-ik⋅x

-g

μν

+(1-λ

-1

)k

μ

k

ν

/(k

2

+i0)

.

ab

ab

(2π)

4

k

2

+i0

(4.13 a)

Для вакуумного матричного элемента использовано сокращенное обозначение

⟨fg…h⟩

0

≡⟨0|fg…h|0⟩,

Перейти на страницу:

Похожие книги

Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки
Суперсила
Суперсила

Наука во все времена стремилась построить целостную картину окружающего мира. В последние десятилетия физики как никогда приблизились к осуществлению этой мечты: вырисовываются перспективы объединения четырех фундаментальных взаимодействий природы в рамках одной суперсилы, и физика микромира все теснее сливается с космологией – теорией происхождения и эволюции Вселенной.Обо всем этом в популярной и увлекательной форме рассказывает книга известного английского ученого и популяризатора науки Пола Девиса (знакомого советскому читателю по книге "Пространство и время в современной картине Вселенной". – М.: Мир, 1978).Адресована всем, кто интересуется проблемами современной фундаментальной науки, особенно полезна преподавателям и студентам как физических, так и философских факультетов вузов.

Пол Девис

Физика / Образование и наука