Сложность в описании тонких уровней реальности и тот долгий путь, который проделала наука, подходя к нему, объясняются тем, что на этих квантовых уровнях относительно высокая мера квантовой запутанности. Попросту говоря, там нет реальности, единой для всех. Сюжет, декорации и «картинки» восприятия могут быть разные — они зависят от сложившейся у человека системы интерпретаций и привычных установок. Но в основе любого сюжета всегда будут лежать объективные энергоинформационные процессы на тонких уровнях реальности. Например, все эти восприятия Тонкого мира могут быть «окрашены» религиозными мотивами, или это будут современные фантастические сюжеты с «инопланетянами» или «
» в главной роли и т. п. При такой ситуации создавалось впечатление, что за этими «картинками» нет объективных элементов реальности, нет физической основы. С одной стороны, это ставило под сомнение мистический опыт, а с другой — сильно затрудняло поиск общих закономерностей. Но все же наука приблизилась к пониманию этих вопросов при изучении фундаментальных процессов в квантовом домене реальности — процессов, связанных с физикой квантовой информации. И основная роль здесь принадлежит количественному описанию несепарабельных состояний. Этот шаг квантовой теории я считаю очень существенным — таким, который имеет все основания стать самым важным и значимым достижением науки за всю ее историю.3.3. Мера квантовой запутанности
Когда речь заходит о количественном описании квантовой запутанности, на первый план выходит понятие матрицы плотности. Первой была введена мера квантовой запутанности для самого простого случая —
системы в чистом состоянии [типа (3.1)], то есть мера запутанности между двухуровневыми подсистемами иЗдесь — частичная (редуцированная) матрица плотности подсистемы
Затем ввел
количественную характеристику запутанности двусоставной системы — не только для чистого, но и для смешанного состояния. Называется онаВпоследствии было найдено[84]
более удобное и общее выражение для вычисления согласованности уже в многосоставных системах:Оно справедливо для произвольных замкнутых систем и характеризует меру квантовой запутанности подсистемы (любой размерности) со всем ее окружением (также любой размерности).
Согласованность в качестве меры квантовой запутанности использовалась в широко известном эксперименте по макроскопической запутанности[85]
.В целом, наличие квантовой запутанности в макроскопических системах трудно подвергнуть сомнению, поскольку есть «железное» утверждение (принцип несепарабельности) — если системы взаимодействуют друг с другом, то они квантово запутаны между собой (связаны нелокальными квантовыми корреляциями). Наличие любого взаимодействия — достаточное условие для квантовой запутанности (несепарабельности) взаимодействующих объектов. Но одно дело — это понимать и декларировать, а другое — уметь количественно описывать эту запутанность и сопоставлять адекватность теоретического описания с результатами физических экспериментов.
Были предложены и другие меры квантовой запутанности, постоянно ведется поиск наиболее
в практическом применении. Из них наиболее известны следующие.1.
, или PPT (positive partial transpose) критерий сепарабельности:Phys. Rev.
.