Читаем Квантовая механика и интегралы по траекториям полностью

§ 2. Принцип неопределённости

Мы сформулируем принцип неопределённости следующим образом: если в процессе выбора из альтернативных ситуаций удаётся проследить более чем за одной из них, то интерференция между этими альтернативами становится невозможной. Первоначальная формулировка принципа, данная самим Гейзенбергом, отличалась от нашей, и мы несколько задержимся, чтобы обсудить исходную гейзенберговскую формулировку.

В классической физике частицу можно считать движущейся по определённой траектории и приписывать ей в каждый момент времени определённые положение и скорость. Такое описание не привело бы к тем необычайным результатам, которые, как мы видели, характерны для квантовой механики. Принцип Гейзенберга ограничивает применимость подобного классического описания. Например, имеет свои пределы представление о том, что частица 'занимает определённое положение и обладает определённым импульсом. Реальная система (т.е. система, подчиняющаяся квантовой механике) представляет собой, если смотреть на неё с классической точки зрения, систему, в которой положение и импульс не определены. Тщательным измерением можно уменьшить неопределённость положения, а в других опытах можно было бы точнее определить импульс. Однако, как утверждает принцип Гейзенберга, нельзя точно измерить обе эти величины одновременно; в любом эксперименте произведение неопределённостей импульса и координаты не может быть меньше некоторой величины порядка h*). Аналогичное условие требуется и для физической согласованности ситуации, которую мы обсуждали выше. Это можно показать, рассмотрев ещё одну попытку определения, через какое именно отверстие проходит электрон.

* h=h/2=1,054•10-27 эрг/см, где h — постоянная Планка.

Пример. Если электрон, проходя через одно из отверстий, отклоняется, то вертикальная составляющая его импульса изменяется. Кроме того, электрон, попадающий в детектор x после прохождения отверстия 1, отклоняется на иной угол (а потому и импульс его претерпевает иное изменение), нежели электрон, попадающий в точку x через отверстие 2. Предположим, что экран B не закреплён жёстко, а может свободно передвигаться вверх и вниз (фиг. 1.5). Любое изменение вертикальной составляющей импульса электрона в момент его прохождения через отверстие будет сопровождаться равным и противоположным по знаку изменением импульса экрана, которое можно найти, измеряя скорость экрана до и после прохождения электрона. Обозначим через p разность между изменениями импульсов электронов, проходящих через отверстия 1 и 2. Тогда для однозначного выяснения того, через какое отверстие прошёл электрон, требуется определить импульс экрана с точностью, превышающей p.

Фиг. 1.5. Ещё одна модификация эксперимента, изображённого на фиг. 1.1.

Экран B может свободно передвигаться в вертикальном направлении. Если электрон проходит отверстие 2 и попадает в детектор (например, в точке x = 0), то он отклонится вверх, а экран x получит отдачу вниз. Определяя, куда откатывается покоившийся вначале экран, можно установить отверстие, через которое проходит электрон. Однако, согласно принципу неопределённости Гейзенберга, такие прецизионные измерения импульса экрана x были бы несовместимы с точным знанием его вертикального положения, поэтому мы не могли бы быть уверены, что линия, соединяющая центры двух отверстий, установлена правильно. Вместо кривой a на фиг. 1.2 мы получим распределение, несколько размазанное в вертикальном направлении, похожее на кривую d фиг. 1.2.

Если в эксперименте импульс экрана B можно измерить с требуемой точностью, то мы тем самым определяем, через какое отверстие прошёл электрон, и распределение вероятностей приобретает вид кривой d на фиг. 1.2. Интерференционная картина (а), очевидно, исчезает. Как это может произойти? Чтобы понять это, заметим, что при построении кривой, описывающей распределение электронов в плоскости экрана C, необходимо точно знать вертикальное положение двух отверстий на экране B. Поэтому мы должны измерить не только импульс экрана B, но и его координату. Для возникновения интерференционной картины (кривая а на фиг. 1.2) положение экрана должно быть известно с точностью, превышающей d/2, где d — расстояние между соседними максимумами кривой. Теперь предположим, что мы не знаем вертикальное положение экрана с такой точностью; тогда положение кривой а на фиг. 1.2 нельзя определить с точностью, большей чем d/2, поскольку за начало отсчёта вертикальной шкалы необходимо принять некоторую фиксированную точку на экране B. При этом значение вероятности P для любого x должно отыскиваться усреднением по всем её значениям внутри окрестности размером d/2 вокруг точки x; в процессе такого усреднения интерференционная картина, очевидно, размажется и результирующая кривая не будет отличаться от кривой d на фиг. 1.2.

Фиг. 1.6. Аналогичный эксперимент со светом.

Перейти на страницу:

Похожие книги

Скрытая реальность. Параллельные миры и глубинные законы космоса
Скрытая реальность. Параллельные миры и глубинные законы космоса

Брайан Грин - автор мировых бестселлеров "Элегантная Вселенная" и "Ткань космоса" - представляет новую книгу, в которой рассматривается потрясающий вопрос: является ли наша Вселенная единственной?Грин рисует удивительно богатый мир мультивселенных и предлагает читателям проследовать вместе с ним через параллельные вселенные.  С присущей ему элегантностью Грин мастерски обсуждает сложнейший научный материал на живом динамичном языке, без привлечения абстрактного языка формул, показывая читателю красоту науки на передовых рубежах исследования. Эта яркая книга является, безусловно, событием в жанре научно-популярной литературы. "Скрытая реальность" - это умный и захватывающий рассказ о том, насколько невероятной может быть реальность и как нам проникнуть в ее тайны.

Брайан Грин , Брайан Рэндолф Грин

Физика / Научпоп / Образование и наука / Документальное