Говорил Бор не яснее, чем писал. «На одной конференции в 1932 году Бор представил фундаментальный доклад, посвященный текущим затруднениям теории атома, – вспоминал ученик Бора Карл фон Вейцзеккер. – Со страдальческим лицом, склонив голову набок, он еле продирался сквозь нагромождаемые им неоконченные фразы»[64]
. Затруднения, которые Бор испытывал при выражении своих мыслей, не ограничивались публичными выступлениями. Рассказывая о частной беседе с Бором, Вейцзеккер писал, что «его спотыкающаяся речь <…> становилась тем менее и менее вразумительной, чем более важным был предмет разговора»[65]. (Как ни странно, при этом Бор якобы настойчиво рекомендовал студентам «никогда не выражаться проще, чем они способны думать».) Однако неясность мысли лишь усиливала закрепившуюся за Бором репутацию мудреца и пророка. Он мог обронить какое-то слово и оставить учеников разгадывать его смысл часы или даже дни напролет[66]. Но эта невнятность вовсе не уменьшала горячей привязанности студентов. Рудольф Пайерлс, один из учеников Бора (позже ставший научным руководителем молодого Джона Белла, когда тот писал докторскую диссертацию), говорил: «Хоть часто мы и не могли понять Бора, мы восхищались им почти безоговорочно и любили его беспредельно»[67].Спустя три дня после встречи с Эйнштейном в Берлине Гейзенберг прибыл в Копенгаген. Со времени своей предыдущей стажировки в институте Бора он успешно защитил докторскую диссертацию, разработал матричную механику и получил предложение возглавить кафедру в профессорской должности. Но он вовсе не чувствовал себя победителем – наоборот, он был раздосадован. Триумф его революционной матричной механики был у него украден – через полгода после выхода его работы венский физик Эрвин Шрёдингер опубликовал статью, в которой изложил теорию волновой механики, конкурирующую с теорией Гейзенберга.
Шрёдингер разработал принципы волновой механики в декабре 1925 года на курорте в Швейцарских Альпах, где он жил со своей подругой. Его теория была изложена относительно простым математическом языком волновых уравнений: гладко изменяющиеся волновые функции подчинялись уравнению Шрёдингера (как мы видели в главе 1). Гейзенберга беспокоило, что достижение Шрёдингера может затмить его собственный результат, и основания для беспокойства у него были. Замысловатый математический аппарат гейзенберговой матричной механики большинству физиков того времени был незнаком, и его нельзя было сопоставить ни с какой вразумительной физической картиной мира. Напротив, в теории Шрёдингера использовалась знакомая всем математика и простые физические идеи. С ней было просто обращаться, ее было легко объяснить. Шрёдингер гордился тем, что его теория не заставляет физиков «подавлять свою интуицию и оперировать одними абстракциями – такими, как вероятности переходов, энергетические уровни и тому подобное»[68]
. И большая часть физического сообщества соглашалась с этим – даже давние союзники Гейзенберга. Арнольд Зоммерфельд, с которым Гейзенберг консультировался при написании своей диссертации, говорил: «Хотя истинность матричной механики несомненна, ее математическое изложение исключительно громоздко и пугающе абстрактно. Вот Шрёдингер и пришел к нам на выручку»[69]. Борн назвал шрёдингеровскую волновую механику «наиболее глубокой формой квантовых законов»[70]. Тем временем Паули уже использовал теорию Шрёдингера, чтобы сделать то, чего он не смог добиться при помощи одной только матричной механики, – вычислить яркость спектральных линий водорода, решив тем самым задачу, не поддававшуюся теоретикам более семидесяти лет[71].Рис. 2.1.
Архитекторы копенгагенской интерпретации в Институте Нильса Бора, 1936 год Слева направо: Бор, Гейзенберг и Паули