Читаем Квантовая революция. Как самая совершенная научная теория управляет нашей жизнью полностью

Все это не слишком отличается от эксперимента с двойной щелью – по сути, это и есть эксперимент с двойной щелью, только с немного отличающейся геометрией. И, как и в эксперименте с двойной щелью, подмывает сказать, что еще до того, как отправиться в путешествие через установку, фотон уже знает, введен ли в нее второй светоделитель. Если светоделитель только один, фотон проходит лишь по одному из путей, но если установлен и второй, фотон проходит оба пути сразу, чтобы он мог сам с собой проинтерферировать.

И тогда Уилер вводит в схему опыта еще одну особенность: задержку момента выбора. Между светоделителем и зеркалом в нижнем правом углу есть некоторый зазор (см. рис. П.1А). Давайте сделаем его побольше – скажем, в несколько километров. Тогда у фотона, летящего со скоростью света, уйдет с десяток микросекунд, чтобы добраться от светоделителя к приемникам. Это даст нам достаточно времени, чтобы при помощи компьютера ввести (или, наоборот, удалить) второй светоделитель уже после того, как фотон выйдет из первого. Другими словами, мы можем отложить выбор схемы, по которой проведем наш эксперимент, – рис. П.1А или рис. П.1Б – до момента, когда фотон уже окажется в пути через экспериментальную установку. Однако, если мы сделаем это, результат опыта не изменится. Когда второй светоделитель на месте, фотон никогда не придет на детектор 2. А когда второй светоделитель выведен из схемы, фотон придет на каждый детектор примерно в половине случаев.

Этот результат выглядит довольно странно, и все-таки он подтверждается реальными экспериментами. Все происходит именно так. Но как же может фотон «решить» отправиться только по одному пути уже после того, как он прошел через первый светоделитель? Этот очевидный парадокс можно усилить, увеличив расстояние, проходимое фотоном. В принципе нет ничего, что помешало бы выполнить этот эксперимент на установке размером со световой год или даже миллиарды световых лет. Все выглядит так, как будто фотон вдобавок к способности иногда находиться в двух местах сразу может еще и изменять свое прошлое – или будто это мы можем влиять на отдаленное прошлое своим выбором конфигурации экспериментальной установки. Уилер решительно присоединился к такой трактовке опыта. «Мы должны заключить, – написал он – что сам акт нашего измерения не только объяснил историю фотона на его пути к нам, но в некотором смысле и определил эту историю. Степень обоснованности прошлой истории Вселенной определяется измерениями, которые мы выполняем – сейчас!»[719]

Но это лишь одна из точек зрения на наш эксперимент, вытекающая из уилеровской версии копенгагенской интерпретации. Что в конечном счете представляет собой измерение? И как оно происходит? Уилер никогда не входил в эти объяснения, он только настаивал, что измерение не имеет никакого отношения к сознанию или жизни. Вне этих пределов он только констатирует, что измерение «есть необратимый акт, в процессе которого неопределенность коллапсирует в определенность»[720]. «Измерение», «коллапс» – мы здесь на знакомой территории, и Уилер снова оказывается перед всегдашней необходимостью определить, что есть измерение и как оно происходит. Но именно этого-то он и не хочет делать. (Уилер также утверждает, что «сутью» квантовой физики, «как показывает эксперимент с отложенным выбором, является измерение»[721]. Правда, это высказывание не очень-то помогает определить, что именно является измерением.) Так вот, есть, конечно, и другие способы взглянуть на этот эксперимент – способы, значительно отличающиеся от расплывчатых и плохо согласующихся друг с другом идей Уилера. Рассмотрим три таких подхода.

Интерпретация с волной-пилотом: фотон попадает на светоделитель. Его волна-пилот расщепляется и следует по обоим путям, тогда как фотон выбирает только один из них (хотя мы не знаем, какой именно). Если второго светоделителя нет, волна-пилот достигает обоих приемников, приводя частицу с собой на один из них.

Если второй светоделитель на месте, то, пройдя через него, волна-пилот интерферирует с собой и не достигает детектора 2. Это не позволяет достичь детектора 2 и фотону, какой бы из путей он ни выбрал.

Не имеет значения, установлен второй светоделитель до или после того, как фотон проходит через первый, – важно только, находится ли второй светоделитель на месте в момент прихода волны-пилота.

Многомировая интерпретация: волновая функция фотона попадает на первый светоделитель, расщепляется и идет по обоим путям. Если второго светоделителя нет, волновая функция фотона попадает на оба приемника и запутывается с их волновыми функциями. Поскольку количество частиц, вовлеченных в эту гигантскую запутанную волновую функцию, огромно, декогеренция происходит очень быстро и волновая функция ветвится. В одной из ветвей фотон приходит на приемник 1, в другой – на приемник 2.

Перейти на страницу:

Все книги серии Большая наука

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Путь Феникса
Путь Феникса

Почему фараоны Древнего Египта считали себя богами? Что скрывается за верованиями египтян в загробную жизнь на небесах и в подземное царство мертвых? И какое отношение все это имеет к проблеме Атлантиды? Автор книги — один из самых популярных исследователей древних цивилизаций в мире — предлагает свой ключ к прочтению вечной тайны египетских пирамид, Великого Сфинкса и загадочного образа священной птицы Феникс; по его убеждению, эта тайна чрезвычайно важна для понимания грядущих судеб человечества. Недаром публикацию его книги порой сравнивают с самим фактом расшифровки египетских иероглифов два века назад.Alan F. Alford.THE PHOENIX SOLUTION. SECRETS OF A LOST CIVILISATION© 1998 by Alan F. Alford

Алан Ф. Элфорд , Алан Элфорд , Вадим Геннадьевич Проскурин

Фантастика / Научная литература / Боевая фантастика / Технофэнтези / Прочая научная литература / Образование и наука / История
ДНК и её человек. Краткая история ДНК-идентификации
ДНК и её человек. Краткая история ДНК-идентификации

Книга Елены Клещенко адресована всем, кого интересует практическое применение достижений генетики в таких областях, как криминалистика, генеалогия, история. Речь о возможности идентификации человека по его генетическому материалу. Автор рассказывает о методах исследования ДНК и о тех, кто стоял у их истоков: cэре Алеке Джеффрисе, придумавшем ДНК-дактилоскопию; эксцентричном Кэри Муллисе, сумевшем размножить до заметных количеств одиночную молекулу ДНК, и других героях «научных детективов».Детективную линию продолжает рассказ о поиске преступников с помощью анализа ДНК – от Джека-потрошителя до современных маньяков и террористов. Не менее увлекательны исторические расследования: кем был Рюрик – славянином или скандинавом, много ли потомков оставил Чингисхан, приходился ли герцог Монмут сыном королю Англии. Почему специалисты уверены в точности идентификации останков Николая II и его семьи (и отчего сомневаются неспециалисты)? В заключении читатель узнает, почему нельзя изобрести биологическое оружие против определенной этнической группы, можно ли реконструировать внешность по ДНК и опасно ли выкладывать свой геном в интернет.

Елена Владимировна Клещенко

Научная литература