Читаем Квантовая революция. Как самая совершенная научная теория управляет нашей жизнью полностью

Говорил Бор не яснее, чем писал. «На одной конференции в 1932 году Бор представил фундаментальный доклад, посвященный текущим затруднениям теории атома, – вспоминал ученик Бора Карл фон Вейцзеккер. – Со страдальческим лицом, склонив голову набок, он еле продирался сквозь нагромождаемые им неоконченные фразы»[64]. Затруднения, которые Бор испытывал при выражении своих мыслей, не ограничивались публичными выступлениями. Рассказывая о частной беседе с Бором, Вейцзеккер писал, что «его спотыкающаяся речь <…> становилась тем менее и менее вразумительной, чем более важным был предмет разговора»[65]. (Как ни странно, при этом Бор якобы настойчиво рекомендовал студентам «никогда не выражаться проще, чем они способны думать».) Однако неясность мысли лишь усиливала закрепившуюся за Бором репутацию мудреца и пророка. Он мог обронить какое-то слово и оставить учеников разгадывать его смысл часы или даже дни напролет[66]. Но эта невнятность вовсе не уменьшала горячей привязанности студентов. Рудольф Пайерлс, один из учеников Бора (позже ставший научным руководителем молодого Джона Белла, когда тот писал докторскую диссертацию), говорил: «Хоть часто мы и не могли понять Бора, мы восхищались им почти безоговорочно и любили его беспредельно»[67].

* * *

Спустя три дня после встречи с Эйнштейном в Берлине Гейзенберг прибыл в Копенгаген. Со времени своей предыдущей стажировки в институте Бора он успешно защитил докторскую диссертацию, разработал матричную механику и получил предложение возглавить кафедру в профессорской должности. Но он вовсе не чувствовал себя победителем – наоборот, он был раздосадован. Триумф его революционной матричной механики был у него украден – через полгода после выхода его работы венский физик Эрвин Шрёдингер опубликовал статью, в которой изложил теорию волновой механики, конкурирующую с теорией Гейзенберга.

Шрёдингер разработал принципы волновой механики в декабре 1925 года на курорте в Швейцарских Альпах, где он жил со своей подругой. Его теория была изложена относительно простым математическом языком волновых уравнений: гладко изменяющиеся волновые функции подчинялись уравнению Шрёдингера (как мы видели в главе 1). Гейзенберга беспокоило, что достижение Шрёдингера может затмить его собственный результат, и основания для беспокойства у него были. Замысловатый математический аппарат гейзенберговой матричной механики большинству физиков того времени был незнаком, и его нельзя было сопоставить ни с какой вразумительной физической картиной мира. Напротив, в теории Шрёдингера использовалась знакомая всем математика и простые физические идеи. С ней было просто обращаться, ее было легко объяснить. Шрёдингер гордился тем, что его теория не заставляет физиков «подавлять свою интуицию и оперировать одними абстракциями – такими, как вероятности переходов, энергетические уровни и тому подобное»[68]. И большая часть физического сообщества соглашалась с этим – даже давние союзники Гейзенберга. Арнольд Зоммерфельд, с которым Гейзенберг консультировался при написании своей диссертации, говорил: «Хотя истинность матричной механики несомненна, ее математическое изложение исключительно громоздко и пугающе абстрактно. Вот Шрёдингер и пришел к нам на выручку»[69]. Борн назвал шрёдингеровскую волновую механику «наиболее глубокой формой квантовых законов»[70]. Тем временем Паули уже использовал теорию Шрёдингера, чтобы сделать то, чего он не смог добиться при помощи одной только матричной механики, – вычислить яркость спектральных линий водорода, решив тем самым задачу, не поддававшуюся теоретикам более семидесяти лет[71].


Рис. 2.1. Архитекторы копенгагенской интерпретации в Институте Нильса Бора, 1936 год Слева направо: Бор, Гейзенберг и Паули


Перейти на страницу:

Все книги серии Большая наука

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Путь Феникса
Путь Феникса

Почему фараоны Древнего Египта считали себя богами? Что скрывается за верованиями египтян в загробную жизнь на небесах и в подземное царство мертвых? И какое отношение все это имеет к проблеме Атлантиды? Автор книги — один из самых популярных исследователей древних цивилизаций в мире — предлагает свой ключ к прочтению вечной тайны египетских пирамид, Великого Сфинкса и загадочного образа священной птицы Феникс; по его убеждению, эта тайна чрезвычайно важна для понимания грядущих судеб человечества. Недаром публикацию его книги порой сравнивают с самим фактом расшифровки египетских иероглифов два века назад.Alan F. Alford.THE PHOENIX SOLUTION. SECRETS OF A LOST CIVILISATION© 1998 by Alan F. Alford

Алан Ф. Элфорд , Алан Элфорд , Вадим Геннадьевич Проскурин

Фантастика / Научная литература / Боевая фантастика / Технофэнтези / Прочая научная литература / Образование и наука / История
ДНК и её человек. Краткая история ДНК-идентификации
ДНК и её человек. Краткая история ДНК-идентификации

Книга Елены Клещенко адресована всем, кого интересует практическое применение достижений генетики в таких областях, как криминалистика, генеалогия, история. Речь о возможности идентификации человека по его генетическому материалу. Автор рассказывает о методах исследования ДНК и о тех, кто стоял у их истоков: cэре Алеке Джеффрисе, придумавшем ДНК-дактилоскопию; эксцентричном Кэри Муллисе, сумевшем размножить до заметных количеств одиночную молекулу ДНК, и других героях «научных детективов».Детективную линию продолжает рассказ о поиске преступников с помощью анализа ДНК – от Джека-потрошителя до современных маньяков и террористов. Не менее увлекательны исторические расследования: кем был Рюрик – славянином или скандинавом, много ли потомков оставил Чингисхан, приходился ли герцог Монмут сыном королю Англии. Почему специалисты уверены в точности идентификации останков Николая II и его семьи (и отчего сомневаются неспециалисты)? В заключении читатель узнает, почему нельзя изобрести биологическое оружие против определенной этнической группы, можно ли реконструировать внешность по ДНК и опасно ли выкладывать свой геном в интернет.

Елена Владимировна Клещенко

Научная литература