Читаем Квантовая революция. Как самая совершенная научная теория управляет нашей жизнью полностью

Реакцию участников конференции на мысленный эксперимент Эйнштейна можно было назвать скрытым непониманием. Бор, к его чести, это непонимание признал откровенно. «Я чувствую себя в очень трудном положении, так как не понимаю, что именно Эйнштейн хочет доказать, – сказал он. – Но это, без сомнения, моя вина»[111]. Простой мысленный эксперимент Эйнштейна содержал сокрушительную критику копенгагенской позиции, но, возможно, сама его простота, как ни парадоксально, стала помехой для его осознания: объяснения Эйнштейна были довольно краткими и могли создать впечатление, что он просто запутался в понимании природы вероятности[112]. В частности, Бор, как видно, уловил мысль Эйнштейна довольно плохо: позже он вспоминал, что у Эйнштейна были сомнения в отношении принципа неопределенности Гейзенберга и он придумал мысленный эксперимент, чтобы как-то этот принцип обойти. Таким образом, для участников Сольвеевской конференции эйнштейновское замечание по поводу нарушения локальности прошло незамеченным. Но Эйнштейн вскоре построил новые мысленные эксперименты, упорно выявляя трудности, которые, как он видел, стояли перед квантовой физикой.

* * *

На следующей Сольвеевской конференции, в 1930 году, Эйнштейн представил Бору другой мысленный эксперимент. В нем участвовало воображаемое устройство, которое содержало пружинный динамометр и подвешенный к нему заполненный светом ящик с точными часами. Бор опять подумал, что Эйнштейн пытается обойти квантовый принцип неопределенности. После недолгого раздумья Бор объявил, что эйнштейновский мысленный эксперимент «провалился» – Эйнштейн не учел некоторых следствий собственной общей теории относительности.

Этот легендарный эпизод вошел в историю квантовой физики – Эйнштейн подорвался на собственной мине[113]. Но на деле неправым оказался Бор. Придумывая мысленный эксперимент, Эйнштейн вовсе не собирался обходить принцип неопределенности – в центре его внимания, как и на Сольвеевском конгрессе тремя годами раньше, снова была локальность. По словам Поля Эренфеста, друга Эйнштейна, тот «более не имел никаких сомнений по поводу соотношений неопределенности» и разработал этот мысленный эксперимент «с совершенно иной целью»[114]. Бор снова попал пальцем в небо[115].

Прошло еще несколько лет, и Эйнштейн предложил еще один мысленный эксперимент, демонстрирующий проблемы с локальностью. На этот раз эхо эйнштейновского выступления отдавалось в течение нескольких десятилетий. Эйнштейн и двое его сотрудников, Борис Подольский и Натан Розен, в 1935 году опубликовали статью с провокационным названием «Можно ли считать полным квантово-механическое описание физической реальности?»[116]. Эту статью, часто обозначаемую инициалами ее авторов (ЭПР), иногда представляют как последнюю отчаянную попытку Эйнштейна выиграть схватку с Бором. Но на деле вся эта история оказалась гораздо более запутанной – и гораздо более интересной.

На первый взгляд, в работе ЭПР речь идет не о локальности, а, по иронии судьбы, именно о том, как обойти гейзенберговский принцип неопределенности. Но вместо того, чтобы придумывать способ прямо измерить импульс и положение одиночной частицы в одно и то же время, что Эйнштейн будто бы делал в своих предыдущих мысленных экспериментах, авторы ЭПР это делают косвенным путем. В предлагаемом ими эксперименте воображаемая пара частиц, A и B, испытывает лобовое столкновение, взаимодействует друг с другом некоторым весьма специальным и чувствительным образом, а затем разлетается в противоположных направлениях. Суммарный импульс всегда сохраняется – это основной закон природы, – и потому общий импульс этих частиц на любой момент времени известен. А способ взаимодействия частиц таков, что расстояние между ними в любой заданный момент легко вычислить.

В классической ньютоновской физике эта ситуация напоминает случай, когда два одинаковых бильярдных шара сталкиваются лоб в лоб и затем отскакивают друг от друга к противоположным стенкам огромного бильярдного стола. Так как общее количество движения пары должно быть нулевым, то, зная скорость и направление движения одного из шаров, мы тем самым мгновенно установим, что второй шар движется с той же самой скоростью в противоположном направлении. Подобным же образом, определение положения одного из шаров на некоторое время тут же даст нам положение и другого, если мы знаем время и точку столкновения.

Перейти на страницу:

Все книги серии Большая наука

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Путь Феникса
Путь Феникса

Почему фараоны Древнего Египта считали себя богами? Что скрывается за верованиями египтян в загробную жизнь на небесах и в подземное царство мертвых? И какое отношение все это имеет к проблеме Атлантиды? Автор книги — один из самых популярных исследователей древних цивилизаций в мире — предлагает свой ключ к прочтению вечной тайны египетских пирамид, Великого Сфинкса и загадочного образа священной птицы Феникс; по его убеждению, эта тайна чрезвычайно важна для понимания грядущих судеб человечества. Недаром публикацию его книги порой сравнивают с самим фактом расшифровки египетских иероглифов два века назад.Alan F. Alford.THE PHOENIX SOLUTION. SECRETS OF A LOST CIVILISATION© 1998 by Alan F. Alford

Алан Ф. Элфорд , Алан Элфорд , Вадим Геннадьевич Проскурин

Фантастика / Научная литература / Боевая фантастика / Технофэнтези / Прочая научная литература / Образование и наука / История
ДНК и её человек. Краткая история ДНК-идентификации
ДНК и её человек. Краткая история ДНК-идентификации

Книга Елены Клещенко адресована всем, кого интересует практическое применение достижений генетики в таких областях, как криминалистика, генеалогия, история. Речь о возможности идентификации человека по его генетическому материалу. Автор рассказывает о методах исследования ДНК и о тех, кто стоял у их истоков: cэре Алеке Джеффрисе, придумавшем ДНК-дактилоскопию; эксцентричном Кэри Муллисе, сумевшем размножить до заметных количеств одиночную молекулу ДНК, и других героях «научных детективов».Детективную линию продолжает рассказ о поиске преступников с помощью анализа ДНК – от Джека-потрошителя до современных маньяков и террористов. Не менее увлекательны исторические расследования: кем был Рюрик – славянином или скандинавом, много ли потомков оставил Чингисхан, приходился ли герцог Монмут сыном королю Англии. Почему специалисты уверены в точности идентификации останков Николая II и его семьи (и отчего сомневаются неспециалисты)? В заключении читатель узнает, почему нельзя изобрести биологическое оружие против определенной этнической группы, можно ли реконструировать внешность по ДНК и опасно ли выкладывать свой геном в интернет.

Елена Владимировна Клещенко

Научная литература