Но если два игрока действительно побеждают, то есть получают более 3 очков из четырех, какой вывод мы обязаны сделать? Первое и самое очевидное заключение сводится к двум вариантам: либо они воздействуют друг на друга каким-то неуловимым образом, либо каким-то образом жульничают. Но предположим, что в наших силах исключить эти две возможности. Тогда можно допустить, что мы ошиблись в умозаключениях, представленных в главе 2. Многие физики и философы потратили годы на изучение этого. Почему бы и вам не потратить на это несколько минут? Помните, что никогда нельзя принимать доводы на веру. У каждого есть право и долг проверять научные рассуждения самому. Очень важно, что доказательство невозможности выиграть в игру Белла без коммуникации очень простое и ясное. Действительно, каждый из двух игроков может выбрать только одну из четырех возможных стратегий. Таким образом, есть всего лишь 4 × 4 = 16 возможных комбинаций стратегий и ни одна из них не дает возможности выигрывать чаще, чем три раза из четырех (см. таблицу 2.1 в главе 2). Просмотрите доказательство еще раз и попробуйте объяснить его приятелю.
Есть все основания быть уверенным в бесспорности этого доказательства. Оно совершенно надежно и проверено тысячами физиков, философов, математиков и специалистов по информатике и вычислительной технике. Но зачем тогда вообще обсуждать проблему выигрыша со счетом больше, чем три из четырех, если это считается невозможным? Это действительно жгучий вопрос. Доказательство настолько просто, что, если бы не квантовая физика, никому не было бы до него дела. Оно так и оставалось бы очевидным фактом среди кучи других неинтересных очевидных фактов, не применимых ни к чему стоящему. Есть единственная причина приглядеться к этому вопросу: дело в том, что современная физика может выиграть в эту игру, даже если игроки не обмениваются информацией и не жульничают.
Нелокальное целое
Вернемся к нашему вопросу: какой вывод мы можем сделать из того, что кто-то систематически выигрывает в игру Белла более, чем 3 раза из 4? Единственная возможность такова: приборы Алисы и Боба, хотя они и разделены пространственно, не разделены логически. Несмотря на расстояние между ними, мы не можем описать ящик Алисы на одной стороне и ящик Боба на другой как отдельные сущности. Другими словами, мы не можем просто сказать, что делает прибор Алисы с одной стороны и что делает прибор Боба с другой. Все происходит так, как будто, несмотря на расстояние между ними, приборы действуют как одна сущность, которую нельзя логически разделить на две части. Короче говоря, они составляют нелокальное целое.
Но что такое нелокальное целое? Теперь вам стало понятнее? Скорее всего нет, только если вы не гений! Здесь слово «нелокальное» означает нечто, которое не может быть описано как две независимых и хорошо локализованных части. Конечно, Алиса и Боб со своими ящиками хорошо локализованы, как любые нормальные люди или ящики. Мы можем окружить их железобетонными стенами и покрыть свинцовой оболочкой или принять другие подобные меры, но мы не сможем описать их поведение отдельно друг от друга: вот так себя ведет прибор Алисы, а вот этак – прибор Боба. В самом деле, если бы каждый из них имел собственное поведение и, следовательно, руководствовался бы своей стратегией, выиграть в игру Белла было бы невозможно. И это утверждение остается справедливым, даже если стратегии и поведение оговорены и скоординированы заранее, еще до того, как приборы разнесли в пространстве.
И здесь мы подходим к замечательному выводу, который не так просто переварить. Если Алиса и Боб завершают игру со счетом более чем 3 из 4, мы вынуждены признать, что, несмотря на расстояние между ними и возможность идентифицировать двух игроков, такой результат их игры не может быть получен локально, отдельно на приборе Алисы и отдельно на приборе Боба.
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и ЭнциклопедииБрэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное