А сейчас давайте перечитаем последний абзац, только вместо «водяной волны» подставим «электронную волну», что бы это ни значило. Электронная волна, если ее интерпретировать должным образом, может объяснить ту полосатую фигуру, которую мы хотим понять, потому что в эксперименте она ведет себя так же, как волна воды. Но осталось объяснить, почему же электронная фигура получается из точек, когда электроны попадают на экран один за другим. На первый взгляд, это противоречит идее гладкой волны, но на самом деле это не так. Нужно догадаться, что мы можем предложить следующее объяснение: электронную волну следует интерпретировать не как реальное материальное возмущение (как в случае с волной воды), а как некий способ информирования нас о том, где, вероятно, электрон будет обнаружен. Заметьте, мы говорим «электрон», а не «электроны», потому что волна должна описать поведение одиночного электрона – таким образом мы получим возможность объяснить, откуда же берутся эти точки. Это электронная волна, а не волна электронов, и тут нельзя ошибаться. Если мы представим себе снимок волны в какой-то момент времени, то возникнет мысль интерпретировать его следующим образом: там, где волна наибольшая, существует наибольшая вероятность найти электрон, а там, где волна меньше всего, вероятность встретить наш электрон наименьшая. Когда волна наконец достигает экрана, там появляется маленькая точка, которая и сообщает о его местонахождении. Единственная задача электронной волны – дать нам возможность вычислить шансы на то, что электрон попадет в определенную точку экрана. Если же не беспокоиться, чем в действительности «является» электронная волна, то все сразу становится ясным, потому что как только мы рассчитаем волну, то сразу сможем сказать, где, скорее всего, располагается электрон. Самое интересное начинается позже, когда мы пытаемся понять, как связано наше предположение по поводу электронной волны с путешествием электрона от щели к экрану.
Но прежде чем мы приступим, полезно будет еще раз перечитать предыдущий абзац, потому что он очень важен. То, что в нем излагается, совершенно не очевидно и уж точно не соответствует интуиции. У предположения об «электронной волне» есть все необходимые свойства, чтобы объяснить появление наблюдаемой при эксперименте интерференционной фигуры, но в целом это типичная догадка о том, как это может происходить на самом деле. Как хорошие физики, мы должны рассмотреть последствия и выяснить, насколько эта догадка согласуется с природой.
Вернемся к рис. 3.1. Мы предположили, что в каждый момент времени электрон описывается волной – такой же, как водяная. В первый момент электронная волна находится слева от щелей. Это значит, что наш электрон в каком-то смысле где-то внутри волны. Позднее волна продвигается к щелям, так же как водяная, и электрон оказывается где-то в составе новой волны. Мы говорим, что электрон «может быть сначала в
Важно, что нет никакого смысла говорить: «Электрон мог проследовать любым из этих маршрутов, но на самом деле он двигался только одним из них». Если решить, что электрон действительно шел по одной конкретной траектории, то у нас будет не больше шансов на объяснение появления интерференционной фигуры, чем если бы мы закрыли одну из щелей в эксперименте с водой. Нам нужно, чтобы волна могла пройти через обе щели – только так мы получим интерференционную фигуру. Значит, нужно разрешить все возможные траектории движения электрона от источника к экрану. Иными словами, под выражением «электрон где-то в волне» мы имели в виду, что он одновременно находится во всей волне! Именно так мы и должны думать, потому что, если мы считаем, что электрон действительно находится в каком-то конкретном месте, волна утрачивает распределенность в пространстве, и мы теряем аналогию с водяной волной. В результате интерференционная фигура остается без объяснения.
Здесь, возможно, снова имеет смысл перечитать приведенные выше рассуждения, потому что из них следует многое из того, что говорится ниже. И это не какая-то ловкость рук: мы утверждаем, что нам нужно описать распространяющуюся волну, которая при этом считается также точечным электроном, и единственный способ сделать это – заявить, что электрон перемещается от источника к экрану всеми возможными траекториями сразу.
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное