Продолжим пояснения и предположим, что частица описывается группой циферблатов, представленных непрерывной кривой на верхнем графике рис. 5.4[18]
. Мы только что выяснили, что эту частицу можно описать и рядом гораздо более длинных групп циферблатов: первая волна с нижнего графика, плюс вторая волна с нижнего графика, плюс третья волна с нижнего графика и т. д. В этом случае в каждой точке оказывается несколько циферблатов (по одному из каждой длинной группы), которые мы должны сложить, чтобы получился единичный циферблат, представленный на верхнем графике рис. 5.4. Выбор метода представления частицы полностью зависит от вас: можно считать, что она представлена одним циферблатом в каждой точке (в этом случае размер циферблата непосредственно поясняет, где вероятнее всего обнаружить частицу, а именно в окрестности пика верхнего графика рис. 5.4). Или же можно считать, что она описывается как математический ряд циферблатов в любой точке, каждый из которых соответствует одному из возможных значений импульса частицы. Таким способом разложения в ряд мы напоминаем себе, что частица, локализованная в небольшой области пространства, не имеет определенного импульса. Невозможность построить компактный волновой пакет из волн одной-единственной длины – очевидная особенность математики Фурье.Такой образ мысли дает возможность по-новому взглянуть на принцип неопределенности Гейзенберга. Он утверждает, что мы не можем описать частицу как локализованную группу циферблатов, если эти циферблаты соответствуют волнам только одной длины. Напротив, чтобы циферблаты отменяли друг друга за пределами локализованной области, мы обязаны смешивать волны разной длины, а следовательно, и разного импульса. Итак, цена, которую мы платим за локализацию частицы в какой-то области пространства, состоит в том, что мы не знаем ее импульса. Более того, чем сильнее мы ограничиваем область возможного местоположения частицы, тем больше волн разной длины нужно добавлять и тем хуже мы знаем импульс частицы. Именно это и составляет содержание принципа неопределенности, и очень приятно, что мы пришли к тому же выводу иным путем[19]
.Завершая эту главу, мы хотели бы еще немного поговорить об анализе Фурье. Это очень хорошее средство описания квантовой теории, и оно тесно связано с идеями, которые мы как раз обсуждаем. Важно, что каждая квантовая частица, что бы она ни делала, описывается волновой функцией. Как мы уже говорили, волновая функция – это просто ряд небольших циферблатов, по одному для каждой точки в пространстве, – а размер циферблата определяет вероятность нахождения частицы в конкретной точке. Такой метод представления частицы носит название
Иными словами, если мы точно укажем, какие именно волны-синусоиды нужны нам для построения волнового пакета и с каким коэффициентом нужно прибавить каждую из волн-синусоид, чтобы получить нужную форму пакета, у нас получится иное, но полностью эквивалентное описание волнового пакета. Интересно, что любая волна-синусоида сама может быть описана одиночным воображаемым циферблатом: его размер отражает максимальную высоту волны, а фаза волны в определенной точке может быть представлена временем, на которое указывает стрелка. Таким образом, мы можем предпочесть представление частицы не через циферблаты в пространстве, но через альтернативный набор циферблатов – по одному для каждого возможного значения импульса частицы. Это описание столь же экономично, как и представление «циферблатов в пространстве», и вместо указания наиболее вероятного положения частицы мы указываем наиболее вероятные значения ее импульса. Этот альтернативный ряд циферблатов называется
Брэдли Аллан Фиске , Брэдли Аллен Фиске
Биографии и Мемуары / Публицистика / Военная история / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Исторические приключения / Военное дело: прочее / Образование и наука / Документальное