Начнем с цифр. В прошлой главе мы видели, что структуру простейшего атома водорода можно понять, найдя разрешенные квантовые волны, которые помещаются внутри потенциальной ямы протона. Это позволило разобраться, по крайней мере, с количественной точки зрения, почему атомы водорода испускают свет именно в таком диапазоне. Будь у нас время, мы могли бы вычислить и энергетические уровни в атоме водорода. Любой студент-физик в какой-то момент обучения проводит эти вычисления, и они прекрасно сходятся с экспериментальными данными. Кстати, о предыдущей главе: упрощение «частица в ящике» было довольно удачным, поскольку содержало все критические моменты, которые мы хотели подчеркнуть. Однако теперь нам понадобятся еще более точные вычисления, учитывающие, что реальный атом водорода существует в трех измерениях. Для нашей частицы в ящике мы рассматривали только одно измерение и получили серию энергетических уровней, помеченных числом n
. Низший энергетический уровень был назван n = 1, следующий – n = 2 и т. д. Когда расчеты распространяются на случай для трех измерений, оказывается (что, впрочем, не должно удивлять), что для характеристики всех разрешенных энергетических уровней необходимы три числа. Традиционно они помечаются как n, l и m и называются квантовыми числами (в этой главе не следует путать m с массой частицы).Квантовое число n
– это эквивалент числа n для частицы в ящике. Оно принимает целые значения (n = 1, 2, 3 и т. д.), а энергия частицы стремится к увеличению с увеличением n. Возможные значения l и m оказываются связаны с n; l должно быть меньше n и может равняться нулю, например, если n = 3, то l может быть 0, 1 или 2; m может принимать любое значение от минус l до плюс l с целочисленными шагами. Так, если l = 2, то m может равняться −2, −1, 0, +1 или +2. Мы не собираемся объяснять, откуда берутся все эти числа, потому что к нашему пониманию предмета это ничего не добавит. Достаточно сказать, что четыре волны на рис. 6.9 имеют (n, l) = (1,0), (2,0), (2,1) и (3,0) соответственно (для всех этих волн m = 0)[31].Как мы уже говорили, квантовое число n
здесь главное: оно контролирует разрешенные значения энергии для электрона. В небольшой степени разрешенные значения энергии зависят и от значения l, но проявляется это только при очень точных измерениях испускаемого света. Бор не принимал его во внимание, впервые вычисляя энергию спектральных линий водорода, и его исходная формула выражалась исключительно через n. От m энергия электрона совершенно не зависит, пока атом водорода не помещен в магнитное поле (собственно, m и называется магнитным квантовым числом), но это не значит, что m не важно. Чтобы понять это, вернемся к нашим числам.Если n
= 1, сколько существует возможно разных энергетических уровней? Применив сформулированные выше правила, узнаем, что l и m могут в случае n = 1 равняться только нулю, так что энергетический уровень будет лишь 1.Теперь проведем расчеты для n
= 2: l может принимать два значения, 0 и 1. Если l = 1, то m может равняться −1, 0 или +1, то есть получается еще 3 энергетических уровня (всего 4).Для n
= 3 l может составлять 0, 1 или 2. Для l = 2 m может равняться −2, −1, 0, +1 или +2, что дает 5 уровней. Итак, всего получается 1 + 3 + 5 = 9 уровней для n = 3. И так далее.Запомните числа для трех первых значений n
: 1, 4 и 9. Теперь посмотрим на рис. 7.1, где показаны первые четыре ряда периодической таблицы химических элементов, и подсчитаем, сколько элементов в каждом ряду. Разделив эти значения на 2, мы получим 1, 4, 4 и 9. Важность этого вскоре выяснится.
Рис. 7.1. Первые четыре ряда периодической таблицы химических элементов