Таким образом, когда экспериментатор открывает ящик, то у него равные шансы обнаружить живую или мертвую кошку. При этом по законам квантовой физики получается, что квантовое состояние кошки в закрытом ящике будет смесью состояния мертвой кошки с состоянием живой. Понять это с точки здравого смысла совершенно невозможно, хотя уже два тысячелетия церковники дурачат нам рассказами о воскресших (то есть де-факто мертвых, но де-юре живых) святых пророках.
Философы науки до сих пор путаются в объяснении подобных парадоксов. Кошка не может быть одновременно наполовину живой и наполовину мертвой от яда, как не может быть человек наполовину усопшим в могиле и наполовину воскресшим на небесах.
Сам Хокинг так объяснял смысл мысленного опыта с кошкой Шрёдингера: суть парадокса в том, что подчеркивается противоречивость объединения большого и сверхмалого. Трудности интерпретации возникают оттого, что экспериментатор подходит к «квантовой кошке» с мерками повседневной реальности, где любой живой организм — кошка или человек — имеет определенную и единственную предысторию. Но весь фокус в том, что в квантовой физике предлагаются совсем иные взгляды на реальность. Каждый микроскопический квантовый объект имеет не единственную предысторию, а целый их веер. В большинстве случаев вероятность какой-то одной предыстории отменяется вероятностью несколько иной, но в определенных случаях вероятности соседних предысторий только усиливают друг друга. И одну из этих усиленных предысторий мы видим как предысторию объекта.
В случае с кошкой Шрёдингера две возможные предыстории усилили друг друга. В одной кошка отравлена, а в другой — жива. В квантовой теории обе возможности могут существовать вместе. Но некоторые современные философы сбиваются с толку, поскольку косвенно предполагают, что кошка или некий Иешуа Назаретянин могут иметь только одну предысторию.
Спор между сторонниками и противниками абсолютной фундаментальности квантовой теории еще далеко не закончен и изредка разгорается с новой силой, вводя в круг обсуждаемых вопросов весьма необычные и даже фантастические предметы, такие как «квантовое сознание наблюдателя». Все это еще раз подчеркивает, насколько далеки от повседневной действительности современные концепции теоретической физики. Во всяком случае они, так или иначе, во многом противоречат обыденным представлениям об окружающем нас классическом мире. Исходя из этого многие ученые, особенно занимающиеся другими разделами физики, просто считают квантовую теорию очень удачным математическим образом, позволяющим успешно предсказывать исход тех или иных экспериментов в микрофизике.
Глава 3. Тайны застывших звезд
Падение в черную дыру стало одним из ужасов научной фантастики. На самом деле о черных дырах сейчас можно сказать, что это научный факт, а не фантастика. Есть достаточные основания утверждать, что черные дыры должны существовать, и наблюдения четко указывают на присутствие в нашей Галактике множества черных дыр, а в других галактиках их еще больше.
Когда говорят о творческом наследии Хокинга, первым делом упоминают о его гипотезе квантового испарения черных дыр.
Свой рассказ о бездонных провалах Вселенной Хокинг всегда начинал с истории становления Общей теории относительности (ОТО). Дело в том, что Давид Гильберт вывел уравнения гравитационного поля почти одновременно с Эйнштейном, который опередил его всего лишь на пару недель. Поэтому, хотя Гильберт исходил из идей Эйнштейна, главные уравнения общей теории относительности называют уравнениями Гильберта — Эйнштейна. Сам Гильберт всегда подчеркивал приоритет Эйнштейна в создании ОТО. Уравнения Гильберта — Эйнштейна устанавливают количественную связь сил всемирного тяготения с кривизной пространства. Оказалось, что там, где есть поле тяготения, пространство всегда искривлено. И наоборот, пространственная кривизна проявляется в виде сил гравитации. Материальные тела как бы прогибают пространство и катятся по образовавшимся впадинам, минуя выпуклости. И вот что замечательно: из уравнений следует, что искривлено не только пространство, но и… время! Можно сказать, что темп его течения зависит от конкретных физических условий, и он разный в различных областях пространства. В перепадах гравитационных полей время может замедляться, почти замирать или резко ускоряться.