На следующий день, я пошел к миссис Глэдстоун и рассказал ей о том, что мне не нравятся ее домашние задания. Наши отношения улучшились, и, что было еще лучше, она стала задавать меньше домашних заданий! Не знаю, изменился ли я, но миссис Глэдстоун изменилась. Она стала делать математику более интересной.
Оглядываясь назад, я вижу, что первоначальная проблема между моей учительницей математики и мной заключалась в том, что математика, в сущности, не была для меня интересным опытом. Она звучала слишком абстрактно. Я не мог установить с ней контакт. Саму миссис Глэдстоун учили, что математика — это нечто количественное и абстрактное, над чем необходимо работать, и именно этому она учила и нас. Даже хотя она старалась делать ее более интересной, у меня все равно создавалось общее впечатление, что математика была просто инструментом, который можно использовать для ведения текущего счета или для занятий физикой. Но математика — это больше чем инструмент: она основывается на глубоко личном опыте.
Основы математики могут быть интересными. Понимание элементов математики не более трудно, чем понимание медитации. На самом деле, именно с помощью процесса медитации, мы вместе будем заново открывать математику.
Еще одна причина того, почему математика часто отпугивает людей, состоит в том, что термины наподобие тригонометрии, исчисления, матрицы, и неэвклидовой геометрии кажутся крайне чуждыми и непостижимыми. По видимому, некоторым математикам даже хочется, чтобы математика была именно такой. Им хочется, чтобы она была чистой и абстрактной, незапятнанной чувствами человеческих существ. Так или иначе, эта абстрактность заставляет людей, не имеющих отношения к науке (равно как и многих ученых) чувствовать себя недостаточно интеллектуально развитыми.
Есть еще одна причина, по которой многие неспециалисты испытывают затруднения с математикой и наукой. Значения терминов, используемых в математике и физике, отличаются от их повседневных значений. Например, такие математические понятия, как «замыкание» и «поле», или физические термины, наподобие «притяжения», «заряда», и «энергии» имеют очень специальные научные значения, которые отличаются от их значений в повседневном словоупотреблении.
В конечном счете, математика связана с тем, как мы воспринимаем. В математике закодирован наш метод осознания и восприятия. Иными словами, психология, физика, и математика, по своей основе, связаны друг с другом.[11]
Вернемся к опыту счета. Например, представьте себе, что на земле лежат пять камней — два красных и три синих. Все камни очень похожи друг на друга, и отличаются только цветом. Если я спрошу взрослого человека, сколько камней лежит на земле, то он. подобно большинству людей, пересчитает их и ответит: «пять».
(Рис. 2.2. Камни на земле)
Однако, дети ведут себя по другому. Маленький ребенок, вероятно, дал бы тот же ответ не сосчитав общее число камней, а сосчитав число темных, а потом число светлых. Дети в возрасте до восьми лет обычно говорят, что есть три темных и два светлых камня.
Между методами счета взрослого человека и ребенка есть разница. Какой метод правильный? Подсчет взрослого человека, который говорит — пять камней, или подсчет ребенка, который говорит — три темных и два светлых камня? Является ли различие только категориальным?
Нет. Счет связан с выбором. Он связан с психологией наблюдателя. Мы считаем то, что нас увлекает. Например, детей могут в большей степени интересовать цвета камней, а не их общее количество. Их восприятие действует по-другому. Им меньше мешает процесс накопления, который воздействует на взрослых, и требует, чтобы мы говорили, что общее число камней — пять, а не три темных и два светлых камня. Что из этого следует? То, что вы считаете, зависит от того, кто вы!
Вообразите, что вы — скотовод. Представьте себе, что вы следите за тем, как ваши овцы утром выходят на пастбище. Они проходят через ворота, а вы стоите там и стараетесь определить, сколько овец выходят из загона. Как вы узнаете, сколько овец выходит? Вы их считаете. Каким образом вы их считаете? Возможно, вы стоите у ворот и считаете каждую проходящую овцу. Допустим, вы насчитали пять овец.
Как и в примере с камнями, ребенок мог бы считать по-другому. Он мог бы сказать, что вышли две коричневые и три черные овцы. Но «две коричневые и три черные овцы» отличаются от «пяти овец». Оба способа счета относятся к разным опытным критериям. Если черные и коричневые овцы имеют равную стоимость на рынке, то число 5 представляет собой важное общее число, поскольку оно описывает богатство, хотя и игнорирует различие между овцами.
Восприятие пяти маргинализирует различие между овцами. Считая до пяти, вы говорите, что для вас — или для скотовода — более важно общее число овец, нежели различия между овцами.